放射線治療計画のための頭部MR画像における膠芽腫の半自動抽出
スポンサーリンク
概要
- 論文の詳細を見る
We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2±9.8% and 84.1±7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.
著者
関連論文
- 放射線治療計画のための頭部MR画像における膠芽腫の半自動抽出
- ステガノグラフィによるDICOM画像の埋め込み(Japanese Session 1)
- 頭部単純CT画像における急性期脳梗塞の検出アルゴリズムの開発
- 経皮的血管形成術(PTA)の合併症
- 短期留学制度20周年を迎えて
- 胸部結節状陰影と間質性肺病変の検出に関するLCDとCRTモニタの比較
- 声門癌症例に対する根治的放射線治療後の生命予後 : 新TNM分類(UICC第6版)での検討
- 多発性骨髄腫に対する姑息的放射線治療
- 放射線治療計画のための頭部MR画像における膠芽腫の半自動抽出
- 頭部単純CT画像における急性期脳梗塞の検出アルゴリズムの開発