Existence and Nonexistence of Global Solutions in Time for a Reaction-Diffusion System with Inhomogeneous Terms
スポンサーリンク
概要
- 論文の詳細を見る
We consider the initial value problem for the reaction-diffusion system with inhomogeneous terms. In this paper we show the existence and nonexistence of global solution in time. Especially, for the nonexistence we extend the conditions of the nonlinear terms and the initial data to the weaker conditions. We prove that for the nonlinear term and the initial data whose support is included in some unbounded domain (for instance, the corn), there do not exist the global solutions in time.
- 日本数学会函数方程式論分科会の論文
日本数学会函数方程式論分科会 | 論文
- The Landau-Lifshitz Flow of Maps into the Lobachevsky Plane
- Uniqueness of Solutions for Zakharov Systems
- Characterization of Wave Front Sets in Fourier-Lebesgue Spaces and Its Application
- Affine Weyl Group Symmetry of the Garnier System
- Exact Eigenvalues and Eigenfunctions Associated with Linearization for Chafee-Infante Problem