Finite Element Analysis of Bone Resorption Around Dental Implant
スポンサーリンク
概要
- 論文の詳細を見る
Previously, a few models have been proposed to predict bone resorption process due to stress shielding in long bones such as proximal femur; however, there are almost no reports on finite element analysis of loss of marginal dental bone that is caused mainly by occlusive overload. In this work, the stress, strain and strain energy density (SED) criteria were separately applied to simulate overload-induced bone resorption in a jawbone/implant system by means of the finite element analysis. A simplified dental bone/implant model was created, with the bone composed of a cortical bone and a cancellous bone and the implant having the detailed screw structure. The results demonstrated that the simulations according to the equal SED criterion reproduce bone resorption patterns that are more realistic to actual clinical situations, when compared to the equal stress or strain criterion. It was shown that bone resorption starts initially in the cortical bone around the implant neck, then extends downwards, and lastly enters the cancellous bone after passing through the interface of the cortical and cancellous bone. A symmetric bone resorption pattern was revealed under the condition of axial loading, whereas an asymmetric resorption prototype was demonstrated under the oblique loading condition. Moreover, in the case of oblique loading, bone resorption is faster and the amount of resorbed bone is larger, which leads to more micromotion of the dental implant than in the case of axial loading.
著者
-
TODO Mitsugu
Research Institute for Applied Mechanics, Kyushu University
-
MATSUSHITA Yasuyuki
Faculty of Dental Sciences, Kyushu University
-
KOYANO Kiyoshi
Faculty of Dental Sciences, Kyushu University
-
Todo Mitsugu
Research Institute For Applied Mechanics Kyushu University
-
QIAN Lihe
Research Institute for Applied Mechanics, Kyushu University
関連論文
- Mechanical studies on biomaterials for reconstruction of lower limb functions (特集 傾斜機能・生体材料)
- Assessment of Mechanical Stability and Safety for Fully Edentulous Maxilla with Dental Implants
- Mechanical Studies on Biomaterials for Reconstruction of Lower Limb Functions
- The Alternation of Peri-Implant Bone Response Exposed to Static Lateral Load
- 3P-159 デジタル画像相開法により得られた局所伸展刺激下における細胞骨格ネットワークの不均一な変形分布(細胞生物的課題(接着,運動,骨格,伝達,膜),第47回日本生物物理学会年会)
- P-19 Deformation Analysis of Periodontal Tissue using Digital Image Correlation Analysis
- Toughening Mechanisms of Rubber Toughened PMMA
- Effect of Displacement Rate on the Mode I Fracture Behavior of Rubber Toughened PMMA
- Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus
- Stress Analysis of PS Type Knee Prostheses under Deep Flexion
- OS1(4)-15(OS01W0152) Application of Phase-Shifting Moire Interferometry to Thermal Strain Analysis of Electronic Package
- Thermo-Mechanical Deformation Analysis of Flip-Chip Packages(Electronic Devices)
- Improvement of mechanical properties of bioabsorbable PLLA/PCL polymer blends due to P(LLA-CL) blending(3A2 Cellular & Tissue Engineering & Biomaterials II)
- In Situ Polymerization and Properties of Methyl Methacrylate-Butadiene-Styrene Resin with Bimodal Rubber Particle Size Distribution
- STRESS ANALYSIS OF COMPLETE FLEXION KNEE CFK UNDER DYNAMIC MOTION(2D1 Artificial Organs & Implants II)
- Finite Element Analysis of Bone Resorption Around Dental Implant
- Dynamic Property Evaluation of PLLA/PBSL Polymer Blends using Compressive and Tensile Split Hopkinson Bar Methods
- Biomechanical Analysis of Implant Treatment for Fully Edentulous Maxillas
- Tensile Fracture Behavior of Polymethyl Methacrylate (PMMA) under Impact Loading Conditions
- Preface
- Relationship between the Load-Displacement Curve and Deformation Distribution in Porcine Mandibular Periodontium
- Visualizing Displacement and Deformation Behavior of the Periodontium under Dental Occlusion Using a Digital Image Correlation Method
- Compressive Deformation Behavior of Bioabsorbable Porous Layered Composite Materials for Articular Tissue Engineering
- Effect of Press Processing on Fracture Behavior of HA/PLLA Biocomposite Material
- Effect of LTI Blending on Fracture Properties of PLA/PCL Polymer Blend
- Characterization of Correlation between Microstructure and Fracture Properties of Poly(lactic acid) Polymer Blends
- The Effect of Hydrolysis on the Mechanical Properties of Injection-Molded Poly(L-lactic acid)
- Evaluation of Deformation Distribution in Alveolar Bone Model around Dental Implant with Numerical Approach