Finite Element Modeling of the Cortical Bone Region Using Clinical CT Images
スポンサーリンク
概要
- 論文の詳細を見る
Since the cortical bone has higher elastic modulus compared to the cancellous bone, its geometry is very important for stress analysis of bone structure. During finite element modeling of bone structure, cortical bone is generally determined as the region having higher CT values with respect to specific threshold value. However, it is difficult to determine the thin cortical bone regions by considering a specific threshold value. This study proposes a method to select regions of cortical bone from clinical CT images by considering CT value distributions of cortical and cancellous bone. Applying the method to bovine proximal femur, the mean error in cortical thickness compared to the actual bone was found to be less than one pixel (0.39×0.39 mm). Hence, the proposed method could accurately determine the cortical bone regions from clinical CT images. The method was also applied to develop a finite element model with the precise cortical bone structure.
- 一般社団法人 日本機械学会の論文
著者
-
Nakatsuchi Hiroki
Division Of Human Mechanical Systems And Design Hokkaido University
-
Tadano Shigeru
Division Of Human Mechanical Systems And Design Graduate School Of Engineering Hokkaido University
-
TODOH Masahiro
Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University
-
NAKATSUCHI Hiroki
Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University
-
NAKATSUCHI Yukio
Orthopedic Surgery, National Nagano Hospital
-
MORI Shinichiro
Medical Physics, National Institute of Radiological Sciences
-
ENDO Masahiro
Medical Physics, National Institute of Radiological Sciences
-
TADANO Shigeru
Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University
関連論文
- Intradiscal Pressure Response to Low-Frequency Cyclic Loading
- Analysis of Three-Dimensional Characteristics in Tumor Morphology
- Residual stress distribution in rabbit limb bones
- Deformation of mineral crystals in cortical bone depending on structural anisotropy
- RELATIONSHIP BETWEEN ELASTIC MODULUS AND LATTICE STRAIN OF HAP CRYSTALS IN BOVINE CORTICAL BONE(Bone Mechanics)
- EFFECT OF HIP PAD WITH AIR CUSHIONS AGAINST FRACTURE OF ELDERLY FEMURS IN FALLS(3C3 Bone & Ligament II)
- Understanding site-specific residual strain and architecture in bovine cortical bone
- A307 Effect of HAp Textures on Strain Distribution in Bovine Cortical Bone
- 424 HAp Orientation Dependent Deformation in Bone Tissue
- Estimating Nanoscale Deformation in Bone by X-ray Diffraction Imaging Method
- RESIDUAL STRESS NEAR FORAMINA OF BOVINE FEMUR AND METACARPUS(3C3 Bone & Ligament II)
- Polychromatic X-ray Measurements of Anisotropic Residual Stress in Bovine Femoral Bone
- Driving Tests and Computer Simulations of Electric Wheelchairs on Snow-Covered Roads
- Residual Stress Evaluation of Hydroxyapatite Coating Ti Implant
- COMPUTER SIMULATION OF TUMOR GEOMETRY IN RADIOTHERAPY(3A2 Cellular & Tissue Engineering & Biomaterials II)
- Effect of cancellous bone on the stress distribution in the proximal human femur(Bone Mechanics)
- GAIT ANALYSIS USING WIRELESS ACCELERATION SENSORS AND GYRO SENSORS(1B3 Orthopaedic & Rehabilitation Biomechanics III)
- 1P1-C08 Scoliosis Corrective Force Estimation from the Implant Rod Deformation
- Effect of Gradual Demineralization on the Mineral Fraction and Mechanical Properties of Cortical Bone
- Relationship between Mechanical Property of Cancellous Bone and Hardness of Trabeculae(Bioengineering)
- Mechanical evaluation of hip pads to protect against fracture of elderly femurs in falls
- Orientation and deformation of mineral crystals in tooth surfaces
- Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur
- In Vitro Laser Bonding of Bovine Cortical Bone Specimen and TCP-Glass Ceramics
- Excitation System for Magnetic Resonance Elastography Using Micro MRI
- Finite Element Modeling of the Cortical Bone Region Using Clinical CT Images