Retraction of Rod-like and Spheroidal Droplets and Stress Relaxation after Step Shear Strain in Polymer Blends
スポンサーリンク
概要
- 論文の詳細を見る
After application of a large step shear strain, a polymer droplet in an immiscible polymer matrix takes rod-like and spheroidal shapes before returning to the spherical shape. Change in semi axes of those droplets is calculated based on the Cohen-Carriere theory and the extension of the theory by Okamoto et al. From comparison with experimental data, it has been found that retraction of semi axes is well described by the theory using a hydrodynamic factor for the droplet associated with the viscous resistance of the matrix. The excess shear stress for rod-like and spheroidal droplets is predicted based on the Doi-Ohta theory by evaluating the interface tensor from the semi axes calculated. The predicted excess shear stress for the deformed droplet is close to experimental data of a polymer blend with narrow distribution of droplet size after normalization per one droplet with the volume-averaged radius. The effects of polydispersity and interaction with adjacent droplets in the blend are suggested for the remaining difference between the prediction and the data.
- 日本レオロジー学会 (The Society of Reology, Japan)の論文
著者
-
Takahashi Masaoki
Department Of Macromolecular Science And Engineering Kyoto Institute Of Technology
-
Okamoto Kenzo
Venture Laboratory Kyoto Institute Of Technology
関連論文
- Dynamic Viscoelasticity in Sol and Gel States for 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/molten Polystyrene Systems
- STRUCTURE AND PROPERTIES OF IONOMERS BASED ON ETHYLENE-CO-METHACRYLIC ACID COPOLYMER(EMAA) : Effects of Thermal History
- STRUCTURE AND PROPERTIES OF IONOMERS BASED ON ETHYLENE-CO-METHACRYLIC ACID COPOLYMER(EMAA) : Effects of Ion Aggregates
- Stress Relaxation under Large Step Strain for Ionomers Based on Ethylene-co-Methacrylic Acid Copolymer in the Melt State
- Dispersed State of Glass Fibers and Dynamic Viscoelasticity of Glass Fiber Filled Polypropylene Melts
- Nonlinear Relaxation Behavior of Entangled Polymer Melts in Several Deformation Fields
- Functional Form of a Damping Function for the BKZ Equation Derived from Experimental Data in Entangled Polymer Systems
- Measurement of Interfacial Tension between Pholymer Liquids:Pendant Drop, lmproved imbedded Fiber Retraction and Steady Shear Flow Methods
- Effects of Droplet Size and Volume Fraction on Relaxation Modulus of Immiscible Polymer Blends: Inclusion of Interface Velocity Term
- Hydrodynamic Interaction Model for Two Droplets under Large Step Shear Strains
- Uniaxial and Biaxial Extension Behavior of a Lightly Cross-Linked PMMA Melt at Constant Strain Rates
- Thermal and Rheological Characterization of Polyurethanes and Their Blends Having Different Soft Segment Length
- Uniaxial Extension Behavior of Cross-Linked Poly (methyl methacrylate)s with Various Degrees of Cross-Linking
- Predictions and Applicability of the BKZ Type Models in Extensional Flows of Polymer Melts
- Dispersion State of Zirconium Oxide Particles in Polymer Blends and Viscoelastic Behavior of the Composites
- Normal Stress Ratio Predicted by Viscoelastic Constitutive Equations
- Droplet Phase and Dynamic Viscoelasticity of PMMA/PS Blend Melts
- Effects of Interface Velocity on the Stress Tensor in Immiscible Polymer Blends: Retraction of Spheroidal Droplets and Stress Relaxation
- Retraction of Rod-like and Spheroidal Droplets and Stress Relaxation after Step Shear Strain in Polymer Blends
- Predictions and Applicability of the BKZ Type Models in Extensional Flows of Polymer Melts
- Thermal and Rheological Characterization of Polyurethanes and Their Blends Having Different Soft Segment Length
- Uniaxial and Biaxial Extension Behavior of a Lightly Cross-Linked PMMA Melt at Constant Strain Rates
- Uniaxial Extension Behavior of Cross-Linked Poly(methyl methacrylate)s with Various Degrees of Cross-Linking
- Dynamic Viscoelasticity in Sol and Gel States for 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/molten Polystyrene Systems
- Dispersion State of Zirconium Oxide Particles in Polymer Blends and Viscoelastic Behavior of the Composites
- Normal Stress Ratio Predicted by Viscoelastic Constitutive Equations
- Retraction of Rod-like and Spheroidal Droplets and Stress Relaxation after Step Shear Strain in Polymer Blends