Uniaxial Extension Behavior of Cross-Linked Poly(methyl methacrylate)s with Various Degrees of Cross-Linking
スポンサーリンク
概要
- 論文の詳細を見る
Cross-linked poly(methyl methacrylate)s with various degrees of cross-linking were prepared, and their swelling, dynamic viscoelasticity and uniaxial extension behavior was investigated. For each sample, the values of molecular weight Mc between cross-links (and trapped entanglements) evaluated from the equilibrium modulus Geq and the Mooney-Rivlin constants (C 1+C2) are comparable, while Mc evaluated from the gel fraction is somewhat higher than those values. It is suggested from the data of excess storage modulus (G−Geq) and the Mooney-Rivlin constant C2 that untrapped entanglement density decreases slightly while trapped entanglement density increases slightly with increasing degree of cross-linking. The strain-hardening tendency at constant strain rates becomes weaker with increasing cross-linking degree, and the strain-hardening does not appear when M c approaches the entanglement molecular weight Me. It is suggested for cross-linked polymers with rather high cross-linking density that chain breakage will occur before chain strands between cross-links stretch enough to result in the strain-hardening.
- 一般社団法人 日本レオロジー学会の論文
- 2003-04-15
著者
-
Takahashi Masaoki
Department Of Macromolecular Science And Engineering Kyoto Institute Of Technology
-
Ogura Koji
Basic Chemicals Research Laboratory Sumitomo Chemical Co. Ltd.
関連論文
- Dynamic Viscoelasticity in Sol and Gel States for 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/molten Polystyrene Systems
- STRUCTURE AND PROPERTIES OF IONOMERS BASED ON ETHYLENE-CO-METHACRYLIC ACID COPOLYMER(EMAA) : Effects of Thermal History
- STRUCTURE AND PROPERTIES OF IONOMERS BASED ON ETHYLENE-CO-METHACRYLIC ACID COPOLYMER(EMAA) : Effects of Ion Aggregates
- Stress Relaxation under Large Step Strain for Ionomers Based on Ethylene-co-Methacrylic Acid Copolymer in the Melt State
- Dispersed State of Glass Fibers and Dynamic Viscoelasticity of Glass Fiber Filled Polypropylene Melts
- Nonlinear Relaxation Behavior of Entangled Polymer Melts in Several Deformation Fields
- Functional Form of a Damping Function for the BKZ Equation Derived from Experimental Data in Entangled Polymer Systems
- Measurement of Interfacial Tension between Pholymer Liquids:Pendant Drop, lmproved imbedded Fiber Retraction and Steady Shear Flow Methods
- Effects of Droplet Size and Volume Fraction on Relaxation Modulus of Immiscible Polymer Blends: Inclusion of Interface Velocity Term
- Hydrodynamic Interaction Model for Two Droplets under Large Step Shear Strains
- Uniaxial and Biaxial Extension Behavior of a Lightly Cross-Linked PMMA Melt at Constant Strain Rates
- Thermal and Rheological Characterization of Polyurethanes and Their Blends Having Different Soft Segment Length
- Uniaxial Extension Behavior of Cross-Linked Poly (methyl methacrylate)s with Various Degrees of Cross-Linking
- Predictions and Applicability of the BKZ Type Models in Extensional Flows of Polymer Melts
- Dispersion State of Zirconium Oxide Particles in Polymer Blends and Viscoelastic Behavior of the Composites
- Normal Stress Ratio Predicted by Viscoelastic Constitutive Equations
- Droplet Phase and Dynamic Viscoelasticity of PMMA/PS Blend Melts
- Effects of Interface Velocity on the Stress Tensor in Immiscible Polymer Blends: Retraction of Spheroidal Droplets and Stress Relaxation
- Retraction of Rod-like and Spheroidal Droplets and Stress Relaxation after Step Shear Strain in Polymer Blends
- Predictions and Applicability of the BKZ Type Models in Extensional Flows of Polymer Melts
- Thermal and Rheological Characterization of Polyurethanes and Their Blends Having Different Soft Segment Length
- Uniaxial and Biaxial Extension Behavior of a Lightly Cross-Linked PMMA Melt at Constant Strain Rates
- Uniaxial Extension Behavior of Cross-Linked Poly(methyl methacrylate)s with Various Degrees of Cross-Linking
- Dynamic Viscoelasticity in Sol and Gel States for 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol/molten Polystyrene Systems
- Dispersion State of Zirconium Oxide Particles in Polymer Blends and Viscoelastic Behavior of the Composites
- Normal Stress Ratio Predicted by Viscoelastic Constitutive Equations
- Retraction of Rod-like and Spheroidal Droplets and Stress Relaxation after Step Shear Strain in Polymer Blends