FILTRATIONS DEFINED BY LATTICE SEQUENCES FOR p-ADIC CLASSICAL GROUPS
スポンサーリンク
概要
- 論文の詳細を見る
Let F_0 be a non-Archimedean local field of residual characteristic not two, and G be a classical group defined over F_0. In this paper, we prove that a filtration of the Lie algebra of G given by a self-dual lattice sequence is equal to a Moy-Prasad filtration of it, and determine a point of the Bruhat-Tits building of G which gives the Moy-Prasad filtration. As an application, we prove that an irreducible smooth representation of G contains a fundamental stratum for a reductive subgroup of G whose self-dual lattice sequence is strict, that is, a self-dual lattice chain.尾道大学Department of Economics, Management and Information Science Onomichi University論文Article
- 尾道大学経済情報学部の論文
- 2003-12-31
尾道大学経済情報学部 | 論文
- 尾道大学草創期における運動部の発展について
- 農地の転用規制について
- 地方財政健全化法と自治体の財政運営
- 市町村の景観形成投資と課税 -ヘンリー・ジョージ定理からの考察-
- e ラーニングシステムMoodle の活用