A sequential pattern mining algorithm using rough set theory
スポンサーリンク
概要
- 論文の詳細を見る
Sequential pattern mining is a crucial but challenging task in many applications, e.g., analyzing the behaviors of data in transactions and discovering frequent patterns in time series data. This task becomes difficult when valuable patterns are locally or implicitly involved in noisy data. In this paper, we propose a method for mining such local patterns from sequences. Using rough set theory, we describe an algorithm for generating decision rules that take into account local patterns for arriving at a particular decision. To apply sequential data to rough set theory, the size of local patterns is specified, allowing a set of sequences to be transformed into a sequential information system. We use the discernibility of decision classes to establish evaluation criteria for the decision rules in the sequential information system.http://www.elsevier.com/wps/find/journaldescription.cws_home/505787/description#description
論文 | ランダム
- 移動体ナビゲーションのためのシースルー型ディスプレイ上での画像の重ね合わせ
- 多指遭遇型ハプティックデバイスの設計
- Low-Temperature Metalorganic Chemical Vapor Deposition of GaAs on Si by Alternate Gas Flow of the Source Materials
- 動作者の視点からのカメラ画像によるモーションキャプチャとロボット作業教示への応用
- チアリーディングにおけるフォーメーションの映像のデジタル工房でのノンリニア編集とDVDオーサリング