Quantized conductance behavior of Pt metal nanoconstrictions under electrochemical potential control
スポンサーリンク
概要
- 論文の詳細を見る
We studied the quantized conductance behavior of mechanically fabricated Pt nanoconstrictions under electrochemical potential control in H2SO4, Na2SO4, and NaOH solutions. There was no clear feature in the conductance histogram, when the electrochemical potential of the nanoconstrictions was kept at the double layer or the under potential deposited hydrogen potential. At the hydrogen evolution potential, the conductance histograms showed clear features around 0.5 and 1 G0 in the H2SO4 solution. In Na2SO4, and NaOH solutions, a 1 G0 feature with a shoulder appeared in the histogram. The quantized conductance behavior of Pt nanoconstrictions could be controlled by the electrochemical potential and solution pH.
- Elsevier B.V.の論文
- 2007-09-15
著者
-
Konishi Tatsuya
Division Of Chemistry Graduate School Of Science Hokkaido University
-
Kiguchi Manabu
Division Of Chemistry Graduate School Of Science Hokkaido University
関連論文
- Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes
- Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes
- Phosphine Sulfides as an Anchor Unit for Single Molecule Junctions
- The effect of hydrogen evolution reaction on conductance quantization of Au, Ag, Cu nanocontacts
- Quantized conductance behavior of Pt metal nanoconstrictions under electrochemical potential control
- Fabrication of stable metal nanowire showing conductance quantization in solution
- Conductance bistability of gold nanowires at room temperature
- Mechanical fabrication of metal nano contacts showing conductance quantization under electrochemical potential control
- Electrochemical Potential Control of Stretched Length of Au Nano-wire in Solution
- Fabrication of sustainable Au mono-atomic wire showing conductance quantization in solution
- 26pRJ-10 Evolution of a nano-gap fabricated by mechanically controlled breaking
- 26pTG-2 Conductance of single C_ molecule bridging between Au electrodes in solution