Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes
スポンサーリンク
概要
- 論文の詳細を見る
The authors have studied the conductance of a 1,4-disubstituted isocyanide(–NC) or thiol(–SH) benzene molecule anchored to two Pt electrodes. A single molecular junction showing a well-defined conductance value (~3×10−2G0, G0=2e2/h) was fabricated with the Pt electrodes. The conductance of the molecular junction was one order higher than the previously documented value using Au electrodes. These observations could be explained by differences in the local density of states of the contact metal atom at the Fermi level and the extent of the hybridization and energy difference between the molecular and metal orbitals. Further insight into the binding strengths of the metal-anchoring group bond was obtained by statistically analyzing the stretching length of the molecular junction. ©2007 American Institute of Physics
- 2007-07-30
著者
関連論文
- Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes
- Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes
- Phosphine Sulfides as an Anchor Unit for Single Molecule Junctions
- The effect of hydrogen evolution reaction on conductance quantization of Au, Ag, Cu nanocontacts
- Quantized conductance behavior of Pt metal nanoconstrictions under electrochemical potential control
- Fabrication of stable metal nanowire showing conductance quantization in solution
- Conductance bistability of gold nanowires at room temperature
- Mechanical fabrication of metal nano contacts showing conductance quantization under electrochemical potential control
- Electrochemical Potential Control of Stretched Length of Au Nano-wire in Solution
- Fabrication of sustainable Au mono-atomic wire showing conductance quantization in solution
- 26pRJ-10 Evolution of a nano-gap fabricated by mechanically controlled breaking
- 26pTG-2 Conductance of single C_ molecule bridging between Au electrodes in solution