均等ラーメン棒の曲げ剪断梁方程式の再考と補訂(補遺)
スポンサーリンク
概要
- 論文の詳細を見る
With relation to formulations presented in foregoing reports of the same title, there exists a truly fundamental however probably unsolved problem of structural dynamics. This is the eigensolution via difference calculus for uniform multi-story and single-bay moment-resisting frames, expressions in which are to be characterized by column-to-girder relative rigidity as well as number of stories. Considerable preliminary insights into the final goal, together with steady repetition of mathematical operations, are required during solution process of the elementarily involved thus seemingly unwieldy task. An additional interpretation of the eigenvalue equation as a polynomial-generator in terms of hyperbolic and circular functions indicates the straightforward relationship to matrix algebra. Then the formulas derived for eigenvalues and eigenmodes are subjected to their expansion into power series of 1/N(N: number of stories) by fixing a dimensionless flexural-shear factor. The latter leads to strict justification of the somewhat curious reasoning used in one of the preceding reports.
- 一般社団法人日本建築学会の論文
- 2001-03-20
著者
関連論文
- 21534 不整形な原子炉建屋の耐震化に関する研究 : その1 : 全体計画概要
- 21251 和分と積分との相互関係式(応答(2),構造II)
- 21262 補訂された均等ラーメン棒の曲げ剪断梁方程式と関連固有値問題の尋常でない解構成
- 21253 集中定数系と分布定数系との間における特異関数の連繁
- 21208 縮退系の固有値問題の解構造とカギ一減衰行列
- 均等ラーメン棒の曲げ剪断梁方程式の再考と補訂(補遺)
- 均等ラーメン棒の曲げ剪断梁方程式の再考と補訂(続々)