OS0518 Ti-6Al-4V合金の疲労強度に及ぼす短時間熱処理および微粒子衝突の効果(OS5-4 薄膜・表面改質,OS-5 材料の疲労挙動と損傷評価2)
スポンサーリンク
概要
- 論文の詳細を見る
This study investigated the effect of short-time heat-treatment and fine-particle bombarding (FPB) on the fatigue strength of Ti-6Al-4V alloy. The slut-time heat-treatment was performed at 953 K〜1203 K for 60 s. Then, the change in the mechanical properties were investigated. The yield strength was greatly decreased by the above heal treatment conducted at 1103 K and the reduction in area was strikingly increased. On the other hand, the yield strength was increased by the heat treatment conducted at 1203 K and the reduction in area was at a higher level than that of the untreated material When the untreated material and the above heat-treated materials were further FPBed, the surface hardness was greatly increased and compressive residual stress was introduced. It was clearly observed on the fracture surfaces that the fatigue cracks of the FPBed materials were initiated from the substrates due to the existence of the hardened layers. This mutt showed that the fatigue strength of the FPBed materials were strongly controlled by the strength of the substrate. Actually, the highest fatigue strength was achieved by the heat-treatment at 1203 K and FPB because this heat treatment remarkably improved the strength of the substrate.
- 一般社団法人日本機械学会の論文
- 2011-07-16
著者
-
森田 辰郎
京都工芸繊維大学
-
川嵜 一博
高周波熱錬株式会社
-
加賀谷 忠治
中部大 工
-
森田 辰郎
京工繊大[院]
-
川嵜 一博
高周波熱錬 (株) (ネツレン)
-
加賀谷 忠治
中部大学工学
-
坂田 俊之
京都工芸繊維大学大学院
-
川嵜 一博
高周波熱錬
関連論文
- 理科教育におけるハニカムモアレの利用
- 理科教育におけるカラーモアレ縞の利用 (可視化情報学会 全国講演会(新潟2005)講演論文集) -- (サイエンティフィックアート 2)
- 307 Ti-6Al-4V合金の疲労強度に及ぼすプラズマ窒化/FPB複合表面改質の効果(OS-3 組織形成と表面改質)
- 313 Ti-20V-4Al-1Sn合金の疲労強度に及ぼす熱間圧延および溶体化・時効処理の影響(疲労特性に及ぼす組織・表面状態の影響I,疲労における機構と評価,オーガナイスドセッション1)
- 721 異種金属表面層の生成に基づく高疲労強度化
- 冷間圧延鋼板と摩擦攪拌接合したアルミニウム合金の強度および成形性
- 温水中に長期間浸漬されたGFRPの損傷状態と超音波エコーの関係
- K-0631 表面薄層内で弾性係数が変化する接合材の応力解析(S06-1 膜質の応力解析とキャラクタリゼーション)(S06 コーティング材の力学特性と損傷機構)
- 微粒子ピーニングを施したSCM415真空浸炭材のハイブリッド表面改質効果
- Ti-6Al-4V合金の疲労強度に及ぼす短時間2段階熱処理の影響
- Ti-20V-4Al-1Sn合金の機械的性質に及ぼす冷間圧延と短時間時効処理の影響
- 322 疲労き裂進展における残留転位群の遮蔽効果
- Ti-20 V-4 Al-1 Sn合金の疲労特性に及ぼす水素吸蔵後の時効処理の影響(水素エネルギーシステムに使用される材料の強度問題)
- 134 β型チタン合金時効材の疲労強度と水素吸蔵量の関係(微視組織と疲労強度評価VI, 疲労の実際と最新の話題 微視組織と疲労強度評価)
- 127 β型チタン合金時効材に及ぼす水素吸蔵の影響(チタン,疲労の機構と強度信頼性,オーガナイスドセッション1,第53期学術講演会)
- 125 異種チタン合金接合材の疲労強度に関する研究(チタン,疲労の機構と強度信頼性,オーガナイスドセッション1,第53期学術講演会)
- 668 誘導加熱熱処理による鋼の強靱化 : (第 3 報)Si-Cr 鋼の延性や靱性におよぼす誘導加熱焼もどしの影響(耐熱鋼・耐熱合金 (2), ばね鋼, 快削鋼, 線材・棒鋼 (1), 材料, 日本鉄鋼協会第 110 回(秋季)講演大会)
- P31 硬質被膜形成に及ぼす微粒子衝突処理の影響(OS7)
- 2809 摩擦攪拌接合したアルミ合金/冷間圧延鋼板の疲労強度および成形性の評価(S35-2 溶接・接合の動向とその展開(2),S35 溶接・接合の動向とその展開)
- 101 摩擦攬拌接合したアルミ合金/冷間圧延鋼板の強度および成形性の評価(接合・界面I,一般セッション)
- 703 摩擦攪拌接合したアルミ合金/冷間圧延鋼板接合材の強度評価(溶接・接合, 残留応力の測定と評価)
- 窒化により表面改質した純鉄と純チタンの疲労特性の比較
- 表面改質したチタンの硬化層に堆積するらせん転位の動力学シミュレーション
- 窒化した純チタンの疲労強度に及ぼす結晶粒径の影響
- “金属疲労の基礎と疲労強度設計への応用”
- 表面改質材の疲労強度の考え方と最近の研究 (特集 機械材料の疲労 最新研究)
- 1342 短時間2段階熱処理によるTi-6Al-4V合金の高疲労強度化(S21-6 ステンレス鋼とチタン合金の疲労,S21 金属材料の疲労特性と破壊機構)
- 転位動力学シミュレーションによる疲労き裂進展挙動の検討(疲労)
- 305 転位に基づく表面改質材の疲労挙動に関する検討
- OS0612 冷間圧延後に時効したβ型チタン合金の組織形態と機械的性質(先進複合材料の強度・特性評価,オーガナイズドセッション)
- 415 真空浸炭処理した SCM415 鋼の疲労強度特性に及ぼす微粒子衝突処理の影響
- OS0711 微粒子衝突処理を施した純チタンの表面組織および疲労特性(構造用材料の疲労挙動と寿命評価,オーガナイズドセッション)
- 積層構造を有するDLC層を被覆したステンレス鋼の疲労特性
- DLC被覆処理を施したTi-6Al-4V合金の疲労特性
- 611 DLC被覆処理を施したTi-6Al-4V合金の疲労特性(実機III : 表面処理,オーガナイズドセッション1.疲労の計測・解析・評価)
- DLC被覆処理を施したステンレス鋼の疲労特性
- 4. 表面改質材の疲労(疲労の基礎と最近の話題)
- 短時間2段階高周波熱処理によるTi-6Al-4V合金の高強度化
- 620 Al/SPCC接合材の界面性状と静的強度(接合,一般セッション,第53期学術講演会)
- 209 繰返し応力下でのすべり段の形成に関する転位動力学シミュレーション
- 疲労き裂進展における残留転位群の遮蔽効果
- 526 HT540 溶接継手の疲労強度におよぼす微粒子ピーニングの影響
- 601 微粒子高速衝突による HT540 溶接継手の疲労き裂進展挙動
- 314 HT540溶接継手の疲労強度特性に及ぼす微粒子ピーニングの影響(OS1-3 表面改質処理と疲労強度)(OS1 高強度材・表面改質材の疲労と破壊)
- 急速高周波焼入材の疲労強度に及ぼす高周波焼戻しの影響
- 窒化した高強度チタン合金の疲労強度
- 516 廃棄メラミン樹脂により窒化処理したSUS304鋼の疲労特性(OS7(1) 表面改質による高機能化)
- 421 窒化した高強度チタン合金の疲労強度
- アルカリ環境で長期間使用されたGFRP製タンクの損傷状態
- 微粒子ピーニングにおける粒子速度および材料表面温度分布の解析
- 312 微粒子高速衝突における材料表面温度分布の解析(材料力学-破壊・変形解析)
- 527 微粒子衝突処理を施した SCM420 および DSG2 ハイブリッド表面改質材の疲労強度特性
- 856 微粒子高速衝突処理を施したハイブリッド表面改質材の疲労強度特性
- 微粒子ピーニングを施したSCM415浸炭窒化材のハイブリッド表面改質効果
- 604 微粒子ピーニングを施した歯車のピッチング疲労強度への影響
- 322 SCM420ハイブリッド表面改質材の三点曲げ疲労強度特性(材料力学-疲労2)
- 319 高珪素ステンレス鋼の引張疲労強度特性(材料力学-疲労1)
- 微粒子ピーニングを施したSCM415浸炭窒化材のハイブリッド表面改質効果
- 101 表面改質材の疲労の新展開
- F07-(1) 微粒子高速衝突による表面改質技術
- 微粒子の高速衝突現象を利用した表面創製の動向
- 137 高硬度微粒子の高速衝突を利用した表面創製処理鋼の疲労強度特性
- 疲労き裂の発生に関する転位動力学シミュレーション
- 629 疲労き裂の発生に関する転位動力学シミュレーション
- 103 急速高周波焼入材の疲労強度に及ぼす高周波焼戻しの影響
- 温水浸漬したGFRPの超音波エコーによる損傷評価
- 短時間高周波熱処理によるTi-6Al-4V合金の高強度化
- レーザ照射によるチタン合金の表面改質
- 窒化処理を施したTi-6Al-4V合金の疲労挙動
- 酸性ガス雰囲気で長期間使用されたGFRP製大型スクラバーの損傷状態
- 冷間圧延鋼板と摩擦撹拌接合したアルミニウム合金の接合部の性状
- 微粒子衝突(FPB)処理による材料表面の高機能化
- アルミニウム合金および炭素鋼の耐食性に及ぼすチタン微粒子衝突処理の効果
- S0305-1-3 プラズマ窒化およびDLC/CrN被覆したステンレス鋼の摩擦特性と疲労特性([S0305-1]表面処理)
- 546 短時間溶体化処理によるTi-6Al-4V合金の延性及び冷間加工性の向上(OS7-2 微視構造を有する材料の変形と破壊,OS7 微視構造を有する材料の変形と破壊)
- 窒化した純チタンの疲労強度に及ぼす表面硬化層の影響
- 窒化処理を施した純チタンの塩酸環境下での疲労特性
- 窒化により表面改質した純チタンの疲労特性
- P043 硬質被膜形成に及ぼす微粒子衝突処理の影響(フェロー賞表彰対象ポスターセッション)
- P026 FPB処理により創製された微細化結晶粒を有する材料の強度特性(フェロー賞表彰対象ポスターセッション)
- 超微粉末衝撃加工(FPB)によるSKD11の表面特性--噴射角の影響 (特集 進化する表面改質技術とその応用) -- (最近の表面改質、及び周辺技術の進歩)
- Ti-6Al-4V合金の疲労強度に及ぼす短時間熱処理および微粒子衝突の効果
- 102 冷間圧延した純チタンの集合組織と疲労特性の関係(疲労損傷I,疲労挙動と予寿命評価,オーガナイスドセッション1)
- 430 温水中に浸漬したGFRPの劣化状況と超音波エコーの関係(解析・評価,一般セッション)
- 728 DLC被覆を最終処理とする複合表面改質を施したステンレス鋼SUS316の疲労特性(被覆材・薄膜材の疲労,疲労損傷の機構解明と評価,オーガナイスドセッション1)
- 527 プラズマ窒化およびDLC被覆処理を施したTi-6Al-4V合金の摩擦特性および疲労特性(表面処理の影響III,疲労研究の課題と展望,オーガナイスドセッション1)
- 628 微粒子衝突処理を施した鉄鋼材料の表面組織(表面改質,一般セッション)
- 118 プラズマ窒化および微粒子衝突処理したTi-6Al-4V合金の疲労強度(表面処理,疲労挙動と予寿命評価,オーガナイスドセッション1)
- 酸環境で長期間使用されたGFRP製タンクの損傷状態と超音波エコー測定に基づく劣化診断
- 微粒子衝突処理により形成される表面層の性状とその効果
- プラズマ浸炭したTi‐6Al‐4V合金の疲労特性に及ぼすFPB処理による化合物層除去および残留応力付与の効果
- プラズマ浸炭およびFPB処理によるTi‐6Al‐4V合金の高疲労強度化
- Ti‐6Al‐4V合金の疲労強度に及ぼす短時間2段階熱処理の影響
- Northwestern大学留学記
- OS0518 Ti-6Al-4V合金の疲労強度に及ぼす短時間熱処理および微粒子衝突の効果(OS5-4 薄膜・表面改質,OS-5 材料の疲労挙動と損傷評価2)
- OS2012 冷間圧延した純チタンの集合組織と機械的性質の関係(OS20-3 チタンおよびLPSO型マグネシウム合金,OS-20 HCP金属の実験力学と計算力学)
- S043012 プラズマ窒化およびTi-DLC被覆処理を施したステンレス鋼SUS316の摩擦特性および疲労特性([S04301]環境調和型の表面改質および薄膜コーティング(1))
- S043023 アルミ合金および炭素鋼の耐食性に及ぼすチタン微粒子衝突処理の効果([S04302]環境調和型の表面改質および薄膜コーティング(2))
- OS0811 摩擦攪拌接合したアルミ合金と冷間圧延鋼板の性状とチタン微粒子衝突処理による耐食性の改善(OS8-3 接合材の強度特性・接合プロセス,OS-8 機械の接合部・接触部のプロセスと疲労・強度問題2)
- DLC被覆を最終処理とする金属材料の複合表面改質