ニューラルテスト理論の特徴 : 古典的テスト理論・ラッシュモデリングとの比較から
スポンサーリンク
概要
- 論文の詳細を見る
The neural test theory (NTT) "uses the mechanism of a self-organizing map" or generative topographic mapping and "assumes the latent scale is ordinal" (Shojima, 2008c). The current study aims to reveal the characteristics of the NTT by applying it to the analysis of a placement test at a university. We compared the NTT results with those obtained using the Classical Test Theory (CTT) and Rasch modeling (RM). The participants comprised 147 Japanese learners of English, whose major subject was international studies or management studies. They took a 90-item multiple-choice vocabulary test. We obtained the test scores using the CTT (percentages correct), RM (latent ability estimates), and NTT (latent rank estimates), and classified the students into three or five groups with different proficiency levels based on the scores derived from the CTT and RM. After a detailed analysis, we ascertained three findings. First, our analysis revealed that the three types of scores and the two types of groups were highly correlated. This suggests that similar results can be obtained by using any one of the three test theories. Second, the maximum number of groups into which we could divide the students was the same (i.e., three) according to the separation index in the RM and the test model-fit indices in the NTT. Third, we compared the item difficulty and discrimination obtained from these three theories and showed that the results of the item difficulty using the CTT, RM, and NTT were highly correlated; similar results were observed for item discrimination computed using the CTT and NTT. Overall, the NTT results (i.e., the test-takers' latent ranks, the maximum number of groups, item difficulty, and item discrimination) are similar to those obtained using the CTT and RM. Furthermore, the NTT is advantageous in computing ordinal ranks based on test-takers' test response patterns with a relatively small sample size and in presenting more information on item monotonicity. Thus, the present study provides evidence for the effectiveness of the NTT in analyzing in language testing data, especially when only ordinal scale results are required.
- 2010-11-15
著者
関連論文
- 語彙の測定とその問題点 : さまざまな測定方法によって引き出される語彙の側面(小中高大を見通した大学英語教育-一貫したカリキュラムを求めて)
- VOC1 多次元的語彙テストによる英語能力の推定(Vocabulary,国際交流「新」時代における大学英語教育カリキュラム刷新)
- リスニング・リコールの分析単位 : アイデア・ユニットvs.トーン・ユニット
- 学習者の語彙知識の「深さ」がリスニングテストの聴解度に及ぼす影響
- 高校英語における実践的コミュニケーション能力の育成とオーラル・コミュニケーションの授業--その効果的な在り方をめぐって
- 多次元的語彙テストのワークショップ(workshop,明日の学習者、明日の教師-大学英語教育における学習者と教師の自律的成長)
- Development and validation of the PC version of the Mochizuki Vocabulary Size Test
- Development and Validation of the PC Version of the Mochizuki Vocabulary Size Test
- スピーチ発表のALTとJTEによる全体的評価 : 客観的測定及び生徒相互評価との関連
- ニューラルテスト理論の特徴 : 古典的テスト理論・ラッシュモデリングとの比較から