Nullification of Small Knots(Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins)
スポンサーリンク
概要
- 論文の詳細を見る
In the paper we consider the nullification number of small knots with at most 9 crossings. We establish two inequalities (Corollary 2.1) relating the nullification number to other knot invariants and properties of the knot diagram. We show that these inequalities allow us to settle the nullification number for all of the 84 prime knots with at most 9 crossings.
- 2011-12-16
著者
-
Ernst Claus
Department Of Mathematics And Computer Science Western Kentucky University
-
MONTEMAYOR Anthony
Department of Mathematics and Computer Science, Western Kentucky University
-
STASIAK Andrzej
Centre Integratif de Genomique, Faculte de Biologie et de Medecine, Universite de Lausanne
-
Stasiak Andrzej
Centre Integratif De Genomique Faculte De Biologie Et De Medecine Universite De Lausanne
-
Montemayor Anthony
Department Of Mathematics And Computer Science Western Kentucky University
-
ERNST Claus
Department of Mathematics and Computer Science, Western Kentucky University
関連論文
- On algebraic knots (1) Computability of their Jones polynomials (結び目とソフトマター物理学--高分子のトポロジー、そして物理学、数学および生物学における関連する話題)
- On algebraic knots (2) An upper bound on their ropelength (結び目とソフトマター物理学--高分子のトポロジー、そして物理学、数学および生物学における関連する話題)
- Nullification of Small Knots(Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins)