On algebraic knots (2) An upper bound on their ropelength (結び目とソフトマター物理学--高分子のトポロジー、そして物理学、数学および生物学における関連する話題)
スポンサーリンク
概要
- 論文の詳細を見る
We prove that given a Conway algebraic link diagram D with n crossings then D can be embedded on the cubic lattice with a length bounded above by cn, where c is a positive constant independent of D and n. This implies that the ropelength of alternating Conway algebraic knots growths at most linear with their crossing number.
- 物性研究刊行会の論文
- 2009-04-20
著者
-
Ernst Claus
Department Of Mathematics Western Kentucky University
-
Diao Yuanan
Department Of Mathematics And Statistics University Of North Carolina
-
Ziegler Uta
Department of Computer Science Western Kentucky University
-
Ernst Claus
Department Of Mathematics And Computer Science Western Kentucky University
関連論文
- On algebraic knots (1) Computability of their Jones polynomials (結び目とソフトマター物理学--高分子のトポロジー、そして物理学、数学および生物学における関連する話題)
- On algebraic knots (2) An upper bound on their ropelength (結び目とソフトマター物理学--高分子のトポロジー、そして物理学、数学および生物学における関連する話題)
- On Frame Wavelet Sets and Some Related Topics (Banach and function spaces and their application)
- The Path-Connectivity of Wavelets and Frame Wavelets (Banach and function spaces and their application)
- Nullification of Small Knots(Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins)