ラグランジ流描像による乱流輸送の統計理論II : 一様等方性乱流の拡散係数および微弱一様剪断を伴う流れのレイノルヅ応力(解析・予測・制御 流体数理(3),一般講演)
スポンサーリンク
概要
- 論文の詳細を見る
The general theory of transportation of heat or momentum in turbulence developed in the previous report are applied for the calculation of transfer coefficients in the isotropic homogeneous turbulence and the turbulence with weak mean shear flow. The theory of Brownian motion re-examined in the previous report for the case of Brownian particles having similar mass with surrounding molecules, are applied for the calculation of the Lagrangian correlations of velocities in isotropic turbulence. The diffusion coefficient was calculated for the model of eddies which have spherical shell spectrum in 3-dimensional wave number space. The conception of similar decay of shear flows was introduced, where the relative magnitude of mean shear to that of corresponding turbulent parameters is maintained to be unchanged during the decay of turbulence. Reynolds stress was calculated based on this model of shear flow.
- 日本流体力学会の論文
- 2009-09-02
著者
関連論文
- ラグランジ流描像による乱流輸送の統計理論III : 剪断流の理論(解析・予測・制御 流体数理(3),一般講演)
- ラグランジ流描像による乱流輸送の統計理論II : 一様等方性乱流の拡散係数および微弱一様剪断を伴う流れのレイノルヅ応力(解析・予測・制御 流体数理(3),一般講演)
- AM06-06-021 ラグランジ流描像による乱流輸送現象の統計的理論(流体数理(4),一般講演)