AM06-06-021 ラグランジ流描像による乱流輸送現象の統計的理論(流体数理(4),一般講演)
スポンサーリンク
概要
- 論文の詳細を見る
A general statistical theory is presented for the transport phenomena in turbulence based on the Lagrangian view-point of fluid flow. The Lagrangian correlation of turbulent velocities is defined as the correlation between velocities of the same fluid particle at the two points separated with time and space coordinates. Using the correlations the transfer equations of heat and momentum in turbulence are derived in the form of integro-differential equations. The equation of heat in particular, provides the generalized diffusion equation of the probability density of a fluid particle. The non-Markovian characters of correlation not included in the usual theories of Brownian motion are discussed by virtue of the present theory. An approximate method is proposed for the calculation of Lagrangian correlation of velocities in isotopic homogeneous turbulence.
- 日本流体力学会の論文
- 2006-09-05
著者
関連論文
- ラグランジ流描像による乱流輸送の統計理論III : 剪断流の理論(解析・予測・制御 流体数理(3),一般講演)
- ラグランジ流描像による乱流輸送の統計理論II : 一様等方性乱流の拡散係数および微弱一様剪断を伴う流れのレイノルヅ応力(解析・予測・制御 流体数理(3),一般講演)
- AM06-06-021 ラグランジ流描像による乱流輸送現象の統計的理論(流体数理(4),一般講演)