Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space
スポンサーリンク
概要
- 論文の詳細を見る
The geometry and topology of complete nonorientable maximal surfaces with lightlike singularities in the Lorentz-Minkowski 3-space are studied. Some topological congruence formulae for surfaces of this kind are obtained. As a consequence, some existence and uniqueness results for maximal Mobius strips and maximal Klein bottles with one end are proved.
著者
-
LOPEZ Francisco
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca
-
Lopez Francisco
Departamento De Geometria Y Topologia Facultad De Ciencias Universidad De Granada
-
Fujimori Shoichi
Department of Mathematics, Fukuoka University of Education
-
Fujimori Shoichi
Department Of Mathematics Fukuoka University Of Education
関連論文
- Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space
- Pharmacokinetic Study of the Digoxin-acenocoumarol Interaction in Rabbits
- Influence of Verapamil and Digoxin on the in Vitro Binding of Doxorubicin to the Rat Heart
- HIGHER-GENUS MEAN CURVATURE-ONE CATENOIDS IN HYPERBOLIC AND DE SITTER 3-SPACES