Stationary waves for viscous heat-conductive fluid in half space (Mathematical Analysis in Fluid and Gas Dynamics)
スポンサーリンク
概要
著者
-
西畑 伸也
東京工業大学情報理工学研究科
-
川島 秀一
九州大学数理学研究院
-
中村 徹
九州大学数理学研究院
-
Zhu Peicheng
Basque Center for Applied Mathematics
-
川島 秀一
九州大学数理学府
-
中村 徹
九州大学数理学府
関連論文
- Stationary waves for viscous heat-conductive fluid in half space (Mathematical Analysis in Fluid and Gas Dynamics)
- 半導体のモデル方程式の階層構造 (非線形波動現象の数理と応用)
- 半導体のモデル方程式の階層構造 (非線形波動現象の数理と応用--RIMS研究集会報告集)
- Convergence rate toward planar stationary solution for the compressible Navier-Stokes equation in half space (非線形波動現象の数理と応用--RIMS研究集会報告集)
- Relaxation limit and initial layer to heat-conductive hydrodynamic models for semiconductor (Mathematical Analysis in Fluid and Gas Dynamics)
- Large-time behavior of solutions for the compressible viscous fluid in a half space(Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic behavior and classical limit of the solutions to quantum hydrodynamic model for semiconductors(Mathematical Analysis in Fluid and Gas Dynamics)
- A stationary solution for a fluid dynamical model of semiconductor(Mathematical Analysis in Fluid and Gas Dynamics : A conference in honor of Professor Tai-Ping Liu on his 60th Birthday)
- Large-time behavior of spherically symmetric flow for viscous heat-conductive gas (Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic behavior of spherically symmetric solutions to the compressible Navier-Stokes equations with external forces (Mathematical Analysis in Fluid and Gas Dynamics)
- Stationary waves for the discrete Boltzmann equations in the half space with reflection boundary conditions (Mathematical Analysis in Fluid and Gas Dynamics)
- 緩和的双曲型保存則系の数学解析
- A Hardy type inequality and application to the stability of degenerate stationary waves (Mathematical Analysis in Fluid and Gas Dynamics)
- Hyperbolic balance laws and entropy (Mathematical Analysis in Fluid and Gas Dynamics)
- Rarefaction waves in discrete kinetic theory(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)
- Global existence and asymptotic behavior of solutions to the mixed problems for the discrete Boltzmann equation(Evolution Equations and Applications to Nonlinear Problems)
- The Boltzmann Equation and Thirteen Moments(Mathematical Analysis of Fluid and Plasma Dynamics I)
- Large-time behavior of solutions for the equations of a viscous gas
- 圧縮性粘性流体の方程式に対するエネルギー法 (応用科学における偏微分方程式と数値解析)
- The Initial value Problems for the Equations of Viscous Compressible and Perfect Compressible Fluids (Nonlinear Functional Analysis)
- BroadwellモデルとNavier-Stokesモデルの$t \to \infty$での漸近関係 (応用科学における偏微分方程式の応用解析)
- Decay property for some hyperbolic-type equations with dissipation (Mathematical analysis in fluid and gas dynamics)
- Existence and stability of boundary layers to the Euler-Poisson equation arising in plasma physics (Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic decay toward the rarefaction waves of solutions for viscous conservation laws in one-dimensional half space (Mathematical Analysis in Fluid and Gas Dynamics)
- 超準解析による経路積分(量子情報理論と開放系)
- 経路積分と超準解析(数理論理学とその応用)
- Feynman経路積分の無限小解析による合理化(Nonstandard Analysisの研究)
- Decay property for some hyperbolic-type equations with dissipation (Mathematical Analysis in Fluid and Gas Dynamics)
- Existence and stability of boundary layers to the Euler-Poisson equation arising in plasma physics (Mathematical analysis in fluid and gas dynamics)
- 有限と無限のはざま--超準解析 (0(ゼロ)と∞(無限大))
- Asymptotic stability of stationary waves for symmetric hyperbolic-parabolic system in half space (Mathematical Analysis in Fluid and Gas Dynamics)
- DECAY STRUCTURE OF REGULARITY-LOSS TYPE FOR SYMMETRIC HYPERBOLIC SYSTEMS WITH RELAXATION (Mathematical Analysis in Fluid and Gas Dynamics)
- Diffusive relaxation limit in Besov spaces for damped compressible Euler equations (Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic stability of stationary solutions for the non-isentropic Euler-Maxwell system (Mathematical Analysis in Fluid and Gas Dynamics)