Feynman経路積分の無限小解析による合理化(Nonstandard Analysisの研究)
スポンサーリンク
概要
著者
関連論文
- Stationary waves for viscous heat-conductive fluid in half space (Mathematical Analysis in Fluid and Gas Dynamics)
- Convergence rate toward planar stationary solution for the compressible Navier-Stokes equation in half space (非線形波動現象の数理と応用--RIMS研究集会報告集)
- Large-time behavior of solutions for the compressible viscous fluid in a half space(Mathematical Analysis in Fluid and Gas Dynamics)
- Large-time behavior of spherically symmetric flow for viscous heat-conductive gas (Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic behavior of spherically symmetric solutions to the compressible Navier-Stokes equations with external forces (Mathematical Analysis in Fluid and Gas Dynamics)
- Asymptotic decay toward the rarefaction waves of solutions for viscous conservation laws in one-dimensional half space (Mathematical Analysis in Fluid and Gas Dynamics)
- 超準解析による経路積分(量子情報理論と開放系)
- 経路積分と超準解析(数理論理学とその応用)
- Feynman経路積分の無限小解析による合理化(Nonstandard Analysisの研究)
- 有限と無限のはざま--超準解析 (0(ゼロ)と∞(無限大))
- Asymptotic stability of stationary waves for symmetric hyperbolic-parabolic system in half space (Mathematical Analysis in Fluid and Gas Dynamics)