Some acyclic relations in the lambda algebra
スポンサーリンク
概要
- 論文の詳細を見る
We consider the relations $\omega \gamma=0 \in \Lambda$, and show that if $\omega \alpha=0$ then $\alpha=\gamma \beta$ for some $\beta$. These relations give the acyclic chain complex $\Lambda @>{\gamma}>> \Lambda @>{\omega}>> \Lambda $. We consider various cases, e.g.~$\omega=\lambda_n$ and $\gamma=\lambda_{2n+1}$. Especially, we consider the case $\omega=w_n=d \lambda_n$ for $n=2^{e+r}+ 2^{e}-1$, where $\gamma=(h_{e+r})^r$.
- 広島大学の論文
著者
関連論文
- An exact sequence related to Adams-Novikov E_2-terms of a cofibering
- Comparison theorems of two Adams spectral sequences
- The Steenrod Algebra and Braid Groups
- Some acyclic relations in the lambda algebra