新しいタイプの相関不等式による無限粒子系の解析
スポンサーリンク
概要
- 論文の詳細を見る
This paper is devoted to studies on interacting particle systems (IPSs) based on correlation inequalities, for examples, Harris-FKG inequality, submodularity, and BFKL inequality. In particular, BFKL inequality is a new type of correlation inequality and a refinement of Harris-FKG inequality and submodularity. As a typical example of IPSs, here we focus on one-dimensional contact process. By using above correlation inequalities, we can easily and systematically obtain lower bonds on critical value and upper bounds on survival probability of contact process, compared with other methods, i. e., edge process technique and Harris lemma method. So we call this method correlation inequality method. However there are some limitations on the method in the present stage. The contact process is attractive and two-state process. Therefore we are studying whether or not Harris-FKG inequality and/or BFKL inequality hold even in non-attractive and/or multi-sate IPSs. Concerning non-attractive Domany-Kinzel model, Monte-Carlo simulations suggest that Harris-FKG inequality is correct. As for multi-state IPSs, for example, 3-state cyclic particle system and successional model in two dimensions, both Harris-FKG type inequality and BFKL type one would be correct according to results on Monte-Carlo simulations.
- 日本応用数理学会の論文
- 2000-03-15
著者
関連論文
- ホリー・リゲット法に対応する相関不等式の数値的評価
- 方向性のあるボンドパーコレーションの浸透確率の上限
- ツリー上でのじゃんけんゲーム
- 複雑ネットワーク上の確率モデル
- 量子ウォークの局在と非局在
- 格子確率モデルの数理と応用 : 複雑性を有する確率モデルの数理的研究[I] : 格子確率モデルの双対性
- 20pWL-1 観測を伴う量子セルオートマトンの統計的性質(力学系(結合振動子・写像・セルオートマトン),領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 30aRD-7 量子セルオートマトンの観測による時間発展の変化(30aRD 確率過程・確率モデル(パーコレーションを含む),領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- Parity Law for Population Dynamics of $N$-Species with Cyclic Advantage Competitions (Stochastic Analysis on Measure-Valued Stocastic Processes)
- 27aWM-10 2次元量子歩行の局在化(確率過程・確率モデル)(領域11)