A Homogenization Procedure for the Numerical Simulation of Mechanical Behavior of CFCC by Considering the Overall and Local Anisotropic Damage
スポンサーリンク
概要
- 論文の詳細を見る
An anisotropic damage constitutive model was presented to characterize mechanical behavior of continuous fiber-reinforced ceramic matrix composites (CFCC) with two-scale damage. An overall fourth-rank damage effect tensor was introduced to account for the overall damage of the composite system. In addition, two local (matrix and fiber) fourth-rank damage effect tensors were introduced to account for the local effects of damage experienced by both the matrix and fibers. The overall and local damage tensors were correlated together using homogenization procedure. In terms of the homogenization methods, the effective elastic properties were obtained, and the stress and strain concentration factors were derived for damaged composites. The model was applied in detail to the unidirectional laminate that was subjected to uni-axial tension. The results were compared well with experimental data. The effects of important parameters such as the fiber volume fraction and the damage material parameters on the nonlinear behavior of the composites were investigated. The model provided a useful tool for understanding the overall dependence of stress-strain behavior on all the underlying constituent material properties.
- 社団法人日本材料学会の論文
- 2004-03-15
著者
-
TAKEZONO Shigeo
Department of Energy Engineering, Toyohashi University of Technology
-
Takezono Shigeo
Department Of Mechanical Engineering Toyohashi University Of Technology
-
LUO Dongmei
Department of Mechanical Engineering, Toyohashi University of Technology
-
Luo Dongmei
Department Of Mechanical Engineering Toyohashi University Of Technology
-
Takezono Shigeo
Department Of Energy Engineering Toyohashi University Of Technology
関連論文
- Elasto/Visco-Plastic Dynamic Response of Axisymmetrical Shells Under Mechanical and/or Thermal Loading
- A Homogenization Procedure for the Numerical Simulation of Mechanical Behavior of CFCC by Considering the Overall and Local Anisotropic Damage
- Finite element analysis of macro-microscopic mechanical behavior of cross-ply fiber-reinforced ceramic matrix composites with matrix anisotropic damage
- The Effect of Loading Direction and Stacking Sequence on the Strength in Quasi-Isotropic CFRP Laminates
- Influence of Stacking Sequence on the Damage Growth in Quasi-isotropic CFRP Laminates
- Thermal Stress and Deformation in Functionally Graded Material Shells of Revolution under Thermal Loading due to Fluid
- Two-Dimensional Collisions of Vehicles : Case of Consideration of Vehicle Movements during Impact
- Elasto/Visco-Plastic Deformation of Shells of Revolution under Thermal Loading due to Fluid
- Elasto/Visco-Plastic Deformation of Multi-Layered Moderately Thick Shells of Revolution
- Dynamic Response of Poroelastic Moderately Thick Shells of Revolution Saturated in Viscous Fluid(Solid Mechanics)
- Analysis of Elasto/Visco-Plastic Dynamic Response of General Thin Shells by Means of 0verlay Model
- The Creep of Multi-Layered Moderately Thick Shells of Revolution Under Asymmetrical Loading
- The Numerical Simulation of the Mechanical Behavior of CFCC with Matrix Anisotropic Damage by Homogenization Method
- Elasto/Visco-Plastic Deformation of Multi-Layered Shells of Revolution
- Dynamic Response of Poroelastic Moderately Thick Shells of Revolution Saturated in Viscous Fluid(Solid Mechanics)