The Numerical Simulation of the Mechanical Behavior of CFCC with Matrix Anisotropic Damage by Homogenization Method
スポンサーリンク
概要
- 論文の詳細を見る
The purpose of the present paper is to establish a damage constitutive model for predicting the elastic-brittle mechanical behavior of continuous fiber reinforced ceramic matrix composites (CFCC). In this paper, the anisotropic damage is applied to describe the matrix phase damage which reflects all types of damage that the matrix material undergoes such as matrix cracking and transverse cracking. The asymptotic expansion homogenization method is used to obtain the effective mechanical properties of the composites, and to derive homogenized damage elastic concentration factor of unidirectional and cross-ply laminate composite materials. Internal variables are introduced to describe the evolution of the damage state under uniaxial loading and as a subsequence the degradation of the material stiffness. Results obtained from the numerical simulations include damage evolution prediction and non-linear stress-strain analyses of macro-microstructure, and they are compared well with existing experimental data.
- 社団法人日本材料学会の論文
- 2003-03-15
著者
-
Luo D
Toyohashi Univ. Technol. Toyohashi Jpn
-
Luo Dongmei
Department Of Mechanical Engineering Toyohashi University Of Technology
-
Takezono Shigeo
Department Of Energy Engineering Toyohashi University Of Technology
関連論文
- Elasto/Visco-Plastic Dynamic Response of Axisymmetrical Shells Under Mechanical and/or Thermal Loading
- A Homogenization Procedure for the Numerical Simulation of Mechanical Behavior of CFCC by Considering the Overall and Local Anisotropic Damage
- Finite element analysis of macro-microscopic mechanical behavior of cross-ply fiber-reinforced ceramic matrix composites with matrix anisotropic damage
- The Effect of Loading Direction and Stacking Sequence on the Strength in Quasi-Isotropic CFRP Laminates
- Influence of Stacking Sequence on the Damage Growth in Quasi-isotropic CFRP Laminates
- Thermal Stress and Deformation in Functionally Graded Material Shells of Revolution under Thermal Loading due to Fluid
- Two-Dimensional Collisions of Vehicles : Case of Consideration of Vehicle Movements during Impact
- Elasto/Visco-Plastic Deformation of Shells of Revolution under Thermal Loading due to Fluid
- Elasto/Visco-Plastic Deformation of Multi-Layered Moderately Thick Shells of Revolution
- Dynamic Response of Poroelastic Moderately Thick Shells of Revolution Saturated in Viscous Fluid(Solid Mechanics)
- Analysis of Elasto/Visco-Plastic Dynamic Response of General Thin Shells by Means of 0verlay Model
- The Creep of Multi-Layered Moderately Thick Shells of Revolution Under Asymmetrical Loading
- The Numerical Simulation of the Mechanical Behavior of CFCC with Matrix Anisotropic Damage by Homogenization Method
- Elasto/Visco-Plastic Deformation of Multi-Layered Shells of Revolution
- Dynamic Response of Poroelastic Moderately Thick Shells of Revolution Saturated in Viscous Fluid(Solid Mechanics)