On Unicity of Meromorphic functions when two differential polynomials share one value
スポンサーリンク
概要
- 論文の詳細を見る
In this article, we deal with the uniqueness problems of meromorphic functions concerning differential polynomials and prove the following result: Let $f$ and $g$ be two nonconstant meromorphic functions and let $n(\geq 14)$ be an integer such that $n+1$ is not divisible by $3$. If $f^{n}(f^{3}-1)f'$ and $g^{n}(g^{3}-1)g'$ share $(1,2)$ or $``(1,2)"$, then $f\equiv g$. If $\overline{E}_{4)}(1,f^{n}(f^{3}-1)f')=\overline{E}_{4)}(1,g^{n}(g^{3}-1)g')$ and $E_{2)}(1,f^{n}(f^{3}-1)f')=E_{2)}(1,g^{n}(g^{3}-1)g')$, then $f\equiv g$.
- 広島大学の論文