Plane Algebraic Curves Drawn by the Orthocenter of a Pedal Triangle : Applications of a Drawing Tool and Mathematica
スポンサーリンク
概要
- 論文の詳細を見る
In this paper we present a computer tool for drawing a locus of the orthocenter of the pedal triangle for a triangle with two vertices fixed when one moves the third vertex along a distinguished curve. The drawing tool provides many plane algebraic curves with simple expressions.
- 香川大学の論文
著者
関連論文
- ビジュアライゼーションを活用した三角関数の指導
- 動くグラフによる視覚から入る数学の授業実践III : Web 教材と MathReader を利用して
- 動くグラフによる視覚から入る数学の授業実践 : Web 教材と MathReader を利用して
- パソコンを利用する微分積分と微分方程式の授業 : Mathematica による試み
- 教員養成課程における学生の多様化について : 教育学部学生の教員免許取得意欲に関する意識調査からみた学生タイプ
- Plane Algebraic Curves Drawn by the Isogonal Conjugate for a Triangle : Applications of a Drawing Tool and Mathematica
- On the Statistical Usefulness and Application of Sample Range
- Plane Algebraic Curves Drawn by the Orthocenter of a Pedal Triangle : Applications of a Drawing Tool and Mathematica
- Some Aspects Concerning the Evaluations of Sum of Squares by Range
- On the Evaluations of Sum of Squares by Using the Range III
- 教員養成学部における数学教育の新カリキュラムの開発研究
- On the Evaluations of Sum of Squares by Using the Range II
- On the Evaluations of Sum of Squares by Using the Range
- Graphical Representation of Imaginary Roots of an Algebraic Equation II
- Graphical Representation of Imaginary Roots of an Algebraic Equation I
- 数学的な考え方の評価について
- Two Examples of Almost Dedekind G-Domains with Infinitely Many Maximal Ideals
- Taut-Level Hilbert Rings III
- Taut-Level Hilbert Rings II
- Taut-Level Hilbert Rings
- Hilbert Rings of the Form D+M. II
- ネター整域の素イデアル鎖について (可換環論の研究)
- An Elementary Construction of a Cantor Set with Arbitrary Hausdorff Dimension (集合論的・幾何学的トポロジーとその応用の研究(研究集会報告集))
- On a Continuous Selection for a Continuous Set-valued Map to the Euclidean Plane