ラプラスの統計的推測(蕗谷硯児教授退任記念号)
スポンサーリンク
概要
- 論文の詳細を見る
The first person to attempt an answer to the question of how to determine probability from observed frequencies was T. Bayes. However, Bayes' formulation of this problem is ambiguous. Further progress was made some years later by P. S. de Laplace, using by what is called the Bayes' Principle. He derived the true answer of this problem. An approch of this question by Laplace was analytical. He made an exhaustive investigation of the Beta probability integral. To go further, Laplace had to prove the law of large numbers and to evaluate the integral [numerical formula] for arbitrary T. He then applied those results to a problem in mathematical statistics. During the 26 year period from 1745 to 1770, 251, 527 boys and 241,945 girls had been born in Paris. Setting x the probability of a male birth, Laplace made a calculation using his analysis, and demonstrated that the probability that x≦1/2 was 1.15×10^<-42>. He therefore concluded that it was "morally certain" that x>1/2. This is a kind of the hypothesis testing. In the 1783 paper, Laplace intended to analyzing the data of vital statistics of Paris from 1771 to 1784 and to estimate for the population of France over two-year period 1781-1782. In modern terminology, Laplace concluded that a confidence interval for population of France with probability 0.999999 is 25,299,417±500,000. For this reason, I think that the mathemathical statistics orignated with Laplace.
著者
関連論文
- 日本における確率論史(経済学部開設50周年記念号)
- ラプラスの統計的推測(蕗谷硯児教授退任記念号)
- 明治数学史の一断面 (数学史の研究)
- 我が国における明治期の確率・統計の教育について (数学史の研究)
- 泉州の算額(共同研究 : 泉州の歴史と文化)
- 泉州の和算家(続)(共同研究 : 泉州の歴史と文化)
- カルダノの確率研究について (数学史の研究)
- 古典確率論の歴史の諸問題(数学史の研究)
- 統計学の歴史 (知としての統計学)
- ラプラスの推定論
- ブラウン運動の一つの歴史的考察(竹浪祥一郎教授退任記念号)
- 近代数理統計学史 : カール・ピアソン(V)
- 近代数理統計学史 : カール・ピアソン(IV)
- 旧約聖書にみられる確率概念 (創立20周年記念号)
- 近代数理統計学史 : カール・ピアソン(III)(自然科学)
- 近代数理統計学史カール・ピアソン(II)
- L.L.ホワイト『ロージャー・ジョゼフ・ボスコヴィチ』
- 近代数理統計学史カール・ピアソン(I)
- コンピュ-タと人間破壊 (現代危機の構図)
- トマス・ベイズと『偶然論における-問題を解くための試論』について
- 展望 : 古典確率論史