Fractional caluculus on parabolic Bergman spaces
スポンサーリンク
概要
- 論文の詳細を見る
The parabolic Bergman space is the set of all $L^p$-solutions of the parabolic operator $L^{(\alpha)}$. In this paper, we study fractional calculus on parabolic Bergman spaces. In particular, we investigate properties of fractional derivatives of the fundamental solution of the parabolic operator. We show the reproducing property of fractional derivatives of the fundamental solution.
- 広島大学の論文
著者
-
Hishikawa Yosuke
Department Of General Education Gifu National College Of Technology
-
Hishikawa Yosuke
Department Of Mathematics Faculty Of Engineering Gifu University Yanagido 1-1 Gifu 501-1193 Japan
関連論文
- The reproducing formula with fractional orders on the parabolic Bloch space
- Fractional caluculus on parabolic Bergman spaces
- Conjugate functions on spaces of parabolic Bloch type