A note on relative duality for Voevodsky motives
スポンサーリンク
概要
- 論文の詳細を見る
Let $k$ be a perfect field which admits resolution of singularities in the sense of Friedlander and Voevodsky (for example, $k$ of characteristic $0$). Let $X$ be a smooth proper $k$-variety of pure dimension $n$ and $Y,Z$ two disjoint closed subsets of $X$. We prove an isomorphism \[ M(X-Z,Y)\simeq M(X-Y,Z)^*(n)[2n], \] where $M(X-Z,Y)$ and $M(X-Y,Z)$ are relative Voevodsky motives, defined in his triangulated category $\operatorname{DM}_{\rm gm}(k)$.
- 東北大学の論文
著者
-
Barbieri-viale Luca
Dipartimento Di Matematica Pura E Applicata Universita Degli Studi Di Padova
-
Kahn Bruno
Institut De Mathematiques De Jussieu