Perturbative Changes of the Nature of Invariant Varieties for Some Higher Dimensional Integrable Maps(General)
スポンサーリンク
概要
- 論文の詳細を見る
We have shown in our previous paper that the periodic points of some higher dimensional integrable maps form an invariant variety specific for each period when the maps have sufficient number of invariants. We show, in this paper, that all quasi periodic orbits also form an invariant variety if the map can be reduced to a set of Mobius maps using the invariants. We also study how the nature of the invariant varieties changes when the map becomes nonintegable by a perturbation.
- 社団法人日本物理学会の論文
- 2008-02-15
著者
-
Saitoh Noriko
Applied Mathematics Yokohama National University
-
SAITO Satoru
Applied Mathematics, Yokohama National University
-
Saito Satoru
Applied Mathematics Yokohama National University
関連論文
- Perturbative Changes of the Nature of Invariant Varieties for Some Higher Dimensional Integrable Maps(General)
- Invariant Varieties of Periodic Points for Some Higher Dimensional Integrable Maps(General)