Invariant Varieties of Periodic Points for Some Higher Dimensional Integrable Maps(General)
スポンサーリンク
概要
- 論文の詳細を見る
By studying various rational integrable maps on C^d with p invariants, we show that periodic points form an invariant variety of dimension ≥ p for each period, in contrast to the case of nonintegrable maps in which they are isolated. We prove the theorem: "If there is an invariant variety of periodic points of some period, there is no set of isolated periodic points of other period in the map."
- 社団法人日本物理学会の論文
- 2007-02-15
著者
-
Saitoh Noriko
Yokohama National Univ. Yokohama
-
Saitoh Noriko
Applied Mathematics Yokohama National University
-
SAITO Satoru
Applied Mathematics, Yokohama National University
-
Saito Satoru
Applied Mathematics Yokohama National University
関連論文
- Perturbative Changes of the Nature of Invariant Varieties for Some Higher Dimensional Integrable Maps(General)
- Invariant Varieties of Periodic Points for Some Higher Dimensional Integrable Maps(General)