Faster than Lyapunov decays of classical Loschmidt echo (数理科学的考察・量子情報理論、生物学)
スポンサーリンク
概要
- 論文の詳細を見る
We show that the composition of perturbed forward and unperturbed backward hamiltonian evolution can be treated as a time-dependent hamiltonian system. For strongly chaotic systems we derive a cascade of exponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent, followed by a sum of two largest exponents, etc.
- 素粒子論グループ 素粒子研究編集部の論文
- 2004-07-20
著者
-
Prosen Tomaz
Physics Department Faculty Of Mathematics And Physics University Of Ljubljana
-
Veble Gregor
Physics Department Fmf University Of Ljubljana:center For Applied Mathematics And Theoretical Physic
-
Veble Gregor
Physics Department Fmf University Of Ljubljana:center For Applied Mathematics And Theoretical Physic
関連論文
- Uni-directional transport in billiards
- Theory of Quantum Loschmidt Echoes
- Theory of Quantum Loschmidt Echoes
- Quantum fidelity decay of classically integrable dynamics with vanishing time averaged perturbation
- Faster than Lyapunov decays of classical Loschmidt echo (量子力学とカオス--基礎的問題からナノサイエンスまで)
- Faster than Lyapunov decays of classical Loschmidt echo (数理科学的考察・量子情報理論、生物学)