Wilson-type renormalization group analysis at finite temperature (量子場の理論--非摂動論的手法の新展開)
スポンサーリンク
概要
- 論文の詳細を見る
有限温度効果をといれたWilson流繰り込み群(WRG)の方法を2+1次元の非相対論的電子+ゲージ場系に応用し、理論を特徴づけるパラメターの流れ、相構造等を議論した。
- 素粒子論グループ 素粒子研究編集部の論文
- 1996-12-20
著者
関連論文
- 23aEH-12 Z(2)ゲージ・スピンネットワークにおけるグラス相(23aEH スピングラス・ランダムスピン系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 22pEH-6 有効磁場中の光格子ハードコアボソン系の相構造(22pEH 量子スピン系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 14p-H-5 強相電子系における複合ゲージ粒子の力学と荷電-スピン分離
- 27pQK-4 全結合及び疎結合Z(2)ゲージニューラルネットにおける学習と想起(ニューラルネットワーク,領域11,統計力学,物性基礎論,応用数学,力学,流体物理)
- 27pRL-7 t-Jモデルの有効モデル : ダブルCP^1+U(1)格子ゲージ理論(高温超伝導,領域8,強相関系:高温超伝導,強相関f電子系など)
- 双対性を用いたランダムスピン系の相図に関しての考察(平成16年度基研研究会報告「場の量子論の基礎的諸問題と応用」,研究会報告)
- 25aYP-3 t-J模型のスピンギャップ相における電気抵抗
- t-J模型における擬スピンギャップの電気抵抗に対する効果(基研研究会「強結合超伝導-Pseudogapを中心として-」,研究会報告)
- Wilson-type renormalization group analysis at finite temperature (量子場の理論--非摂動論的手法の新展開)
- 3p-E-2 ゲージ相互作用する非相対論的フェルミオン系の有限温度における性質
- 31p-S-7 t-J模型のスピンギャップ相における電気抵抗
- ゲ-ジ相互作用している非相対論的フェルミオン系のくりこみ群による解析〔英文〕 (場の理論の共通課題)
- 23pTH-10 ランダムゲージ・スピンネットワークにおけるグラス相(23pTH スピングラス・ランダムスピン系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 23pTH-9 3次元ランダムZ(2)ヒッグス格子ゲージモデルの相構造(23pTH スピングラス・ランダムスピン系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 26aRD-7 有効磁場下における光格子中のハードコアボソン系の相図(26aRD 量子エレクトロニクス(ボソン),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- 25pTE-8 3次元CP^N+U(1)ゲージモデルの臨界現象(25pTE 量子スピン系,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 27aVL-8 Bosonic t-J模型におけるCP^1スピノンとボゾニックホロンでみた磁性秩序と超伝導の関係(27aVL 銅酸化物など(理論),領域8(強相関系:高温超伝導,強相関f電子系など))
- 22aQE-6 超伝導のRVBU(1)ゲージモデルの相構造と不純物効果(22aQE 銅酸化物など(理論),領域8(強相関系:高温超伝導,強相関f電子系など))
- 24pZG-8 Unconventional SuperconductorのGinzburg-Landau理論としてのDual Gauge理論(24pZG 高温超伝導(理論),領域8(強相関系:高温超伝導,強相関f電子系など))
- 14aTB-11 Neel-Dimer Tiansition in Antiferromagnetic Heisenberg Model and Deconfinement of Spinons at the Critical Point
- 13pTB-10 Random plaquette gauge models and quantum memory
- 5a-T-12 ラダー上のt-J模型の準粒子と超伝導
- t-J模型におけるホロンとスピノンの統計
- 3p-E-3 量子ホール効果における粒子-磁束分離現象のゲージ理論
- 28pTJ-4 4次元CP^1+U(1)量子ゲージニューラルネットワークにおける脳波(28pTJ ニューラルネットワーク,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 21pVB-11 量子ニューラルネットの格子ゲージモデル(21pVB ニューラルネット,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 15aSH-5 量子場脳理論と集団運動(素粒子論領域)
- 19aYO-5 未成熟ホップフィールドモデルとランダムグラフの類似性(ニューラルネットワーク(神経系モデルを含む),領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 意識の量子論 : マイクロチューブルの場の理論(場の量子論の基礎的諸問題と応用,研究会報告)
- 29a-YH-5 CP^1模型とFermi面
- 12p-H-3 2次元ハイゼンベルグ模型のボゾンおよびフェルミオン平均場理論
- 25p-ZB-6 2次元ハードコアボソン系のフェルミオン平均場理論
- 27p-PS-5 ハードコアボゾン表示によるXYスピン模型の解析
- 28p-ZB-7 モンテカルロ対角化法によるν=1/2状態のサイズ・スケーリング
- 28p-ZB-7 モンテカルロ対角化法によるν=1/2状態のサイズ・スケーリング
- ゲージ理論と脳の量子物理学 : 量子U(1)ゲージニューラルネットワーク(場の量子論の基礎的諸問題と応用,研究会報告)
- 31pSG-14 量子ニューラルネットワーク : U(1) ゲージ理論
- 31pSG-14 量子ニューラルネットワーク : U(1) ゲージ理論
- 18pRD-8 ニューラルネットワークのゲージ模型における記憶と学習 II
- Michael Stone, The Physics of Quantum Fields, Springer-Verlag, New York and Berlin, 2000, xiii+270p., 24×16cm, 7,120円, [大学院向]
- 22pZA-12 ニューラルネットワークのゲージ模型
- 5a-T-2 t-J模型の3状態有効格子模型の相構造
- プラケット上のt-J模型の平均場理論
- L. S. シュルマン著, 高塚和夫訳, ファインマン経路積分, 講談社, 東京, 1995, xii+336p, 21×15cm, 5,900円 [学部4年, 大学院1年生向教科書]
- 29a-YH-4 t-J模型の有効場理論とくりこみ群による解析
- 誘起されたチャーンーシモンズ(Chern-Simons)項を含む格子ゲージ理論の相構造
- 8p-N-3 スピン自由度と複合粒子フェルミ液体
- 8p-N-3 スピン自由度と複合粒子フェルミ液体
- 26aRA-4 有効磁場下における光格子中のハードコアボソン系のダイナミクス(26aRA 量子エレクトロニクス(Bose粒子系,及びFermi粒子系の理論),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- 26aRA-3 深い2次元光格子中のボーズ凝縮体における渦生成(26aRA 量子エレクトロニクス(Bose粒子系,及びFermi粒子系の理論),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- 25pTD-1 U(1)格子ゲージニューラルネットの時間発展(25pTD ニューラルネットワーク,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 23aGE-4 シナプス結合強度の時間発展と対数正規分布(23aGE ニューラルネットワーク,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 29aEE-6 光格子中の冷却原子系-U(1)格子ヒッグスゲージ理論対応とゲージ対称性の破れ(29aEE 量子エレクトロニクス(Bose粒子系,Fermi粒子系,Bose-Fermi混合系の理論),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- 29pXR-9 反響項を含むニューラルネットにおける非対称結合強度変数の役割(29pXR ニューラルネットワーク2,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 25aSA-11 ν=1/2ランダウ準位における粒子-フラックス分離(25aSA量子ホール効果(発光,二層系),領域4(半導体,メゾスコピック系・局在分野))
- 24aYC-8 マイクロチューブルの場の量子論とデコヒーレンスタイム(24aYC 形態形成・光生物(生物の自己組織化/光反応),領域12(高分子・液晶,化学物理,生物物理分野))
- 3p-E-3 量子ホール効果における粒子一磁束分離現象のゲージ理論(3pE 半導体,低温合同(メゾスコピック,量子ホール効果),低温)