Novel Solitary Pulses for a Variable-Coefficient Derivative Nonlinear Schrodinger Equation(General)
スポンサーリンク
概要
- 論文の詳細を見る
A derivative nonlinear Schrodinger equation with variable coefficient is considered. Special exact solutions in the form of a solitary pulse are obtained by the Hirota bilinear transformation. The essential ingredients are the identification of a special chirp factor and the use of wavenumbers dependent on time or space. The inclusion of damping or gain is necessary. The pulse may then undergo broadening or compression. Special cases, namely, exponential and algebraic dispersion coefficients, are discussed in detail. The case of exponential dispersion also permits the existence of a 2-soliton. This provides a strong hint for special properties, and suggests that further tests for integrability need to be performed. Finally, preliminary results on other types of exact solutions, e.g., periodic wave patterns, are reported.
- 社団法人日本物理学会の論文
- 2007-07-15
著者
-
Grimshaw Roger
Department Of Mathematical Sciences Loughborough University
-
Chow Kwok
Department Of Mechanical Engineering University Of Hong Kong
-
Chow Kwok
Department Of Mathematics University Of Arizona
-
YIP Lai
Department of Mechanical Engineering, University of Hong Kong
-
Yip Lai
Department Of Mechanical Engineering University Of Hong Kong
-
Chow Kwok
Univ. Hong Kong Hkg
関連論文
- Transmission and Stability of Solitary Pulses in Complex Ginzburg-Landau Equations with Variable Coefficients(General)
- Coalescence of Wavenumbers and Exact Solutions for a System of Coupled Nonlinear Schrodinger Equations
- Coalescence of Ripplons, Breathers, Dromions and Dark Solitons : General Physics
- Novel Solitary Pulses for a Variable-Coefficient Derivative Nonlinear Schrodinger Equation(General)
- Exact Solutions for Domain Walls in Coupled Complex Ginzburg--Landau Equations
- Dissipative Solitons in Coupled Complex Ginzburg–Landau Equations
- A “Localized Pulse–Moving Front” Pair in a System of Coupled Complex Ginzburg–Landau Equations
- 'Solitoff' Solutions of Nonlinear Evolution Equations
- Product and Rational Decompositions of Theta Functions Representations for Nonlinear Periodic Waves : General Physics
- Resonances of Solitons and 'Dromions'
- Product Representations of Periodic Waves for the Modified Korteweg-de Vries Family of Evolution Equations
- Theta Functions and the Dispersion Relations of Periodic Waves
- Propagating Wave Patterns in a Derivative Nonlinear Schrödinger System with Quintic Nonlinearity
- The One Dimensional Motion of a Monatomic Gas with a Gaussian Decay in Density
- Rogue Wave Modes for the Long Wave--Short Wave Resonance Model
- Rogue Wave Modes for the Long Wave–Short Wave Resonance Model