A rough multiple Marcinkiewicz integral along continuous surfaces
スポンサーリンク
概要
- 論文の詳細を見る
By means of the method of block decompositions for kernel functions and some delicate estimates on Fourier transforms, the $L^p(\boldsymbol{R}^m \times \boldsymbol{R}^n \times \boldsymbol{R})$-boundedness of the multiple Marcinkiewicz integral is established along a continuous surface with rough kernel for some $p>1$. The condition on the integral kernel is the best possible for the $L^2$-boundedness of the multiple Marcinkiewicz integral operator.
- 東北大学の論文
著者
関連論文
- A class of multilinear oscillatory singular integrals related to block spaces
- A rough multiple Marcinkiewicz integral along continuous surfaces