BOUNDARY BEHAVIOR OF DOUBLE LAYER POTENTIALS IN A DOMAIN WITH FRACTAL BOUNDARY
スポンサーリンク
概要
- 論文の詳細を見る
For a bounded domain D with fractal boundary we consider a Besov space on ∂D, with respect to a measure corresponding to the fractal dimension of ∂D. We define double layer potentials of functions in the Besov space and discuss the existence of nontangential limits of the double layer potentials, with an exceptional set, and estimate the size of the exceptional set by using a Hausdorff measure depending on the order of the Besov space.
- お茶の水女子大学の論文
著者
関連論文
- ESTIMATES OF THE BESOV NORMS ON FRACTAL LATERAL BOUNDARY BY VOLUME INTEGRALS
- Parabolic extension of lateral functions in a cylindrical domain
- CORRECTION TO "ESTIMATES OF THE BESOV NORMS ON FRACTAL BOUNDARY BY VOLUME INTEGRALS"
- ESTIMATES OF THE BESOV NORMS ON FRACTAL BOUNDARY BY VOLUME INTEGRALS
- BOUNDARY BEHAVIOR OF DOUBLE LAYER POTENTIALS IN A DOMAIN WITH FRACTAL BOUNDARY
- Estimates of the Besov norms on the fractal boundary and applications