Estimates of the Besov norms on the fractal boundary and applications
スポンサーリンク
概要
- 論文の詳細を見る
Let u be a λ-Hölder continuous function on the closure of a bounded domain D with fractal boundary ∂ D. We estimate the Besov norm of the restriction of u to ∂ D by the L<SUP>p</SUP>(D)-norm of |∇ u(y)| dist (y, ∂ D)<SUP>λ</SUP> for an adequate λ>0. We apply it to the boundedness of operators related to the double layer potentials on the Besov spaces on ∂ D.
- 社団法人 日本数学会の論文
- 2003-07-01
著者
関連論文
- ESTIMATES OF THE BESOV NORMS ON FRACTAL LATERAL BOUNDARY BY VOLUME INTEGRALS
- Parabolic extension of lateral functions in a cylindrical domain
- CORRECTION TO "ESTIMATES OF THE BESOV NORMS ON FRACTAL BOUNDARY BY VOLUME INTEGRALS"
- ESTIMATES OF THE BESOV NORMS ON FRACTAL BOUNDARY BY VOLUME INTEGRALS
- BOUNDARY BEHAVIOR OF DOUBLE LAYER POTENTIALS IN A DOMAIN WITH FRACTAL BOUNDARY
- Estimates of the Besov norms on the fractal boundary and applications