高層建築設計震度式と週期式
スポンサーリンク
概要
- 論文の詳細を見る
Base shear of the N storied buildings that first mode of vibration are straight can be calculated by the formula(1)[numerical formula]・・・・・・(1) where W: actual weight of each story, h: mean height of a story, T_N: period of building, θ: deflection angle of building. Base shear coefficient of the equivalent one mass system can be calculated by the formula (2)[numerical formula]・・・・・・(2) The period T_N of the N storied building in relation to the period T_1 of the one storied building are shown by the formula (3)[numerical formula]・・・・・・(3) m is the number that values take from 0 to 1 corresponding to the ratio of the rigidity of upper and lower story of the buildings. To determine the value of m the author takes the condition that the deflection angle θ of the N storied building are equal to θ of the one storied building at the same base shear coefficient. Then the value of m is determined equal to 0.5 and the formula of period are shown by the formula (4)[numerical formula]・・・・・・(4) The formula of base shear coefficient are by the formula (5)[numerical formula]・・・・・・(5)If the buildings have frictions and the damping ratio C/C_C is shown by ν・ν is equal to ξ/E (2π)/T_N and (πν)/2 is equal to ξ/E π^2/T_N that is the energy loss at the quarter cycle of one vibration then the base shear formula must be corrected as formula (6)[numerical formula]・・・・・・(6) To show the actual value of C_N the author assumed that h are from 360cm to 410cm and [numerical formula] are equl to 15. The value of ξ/E where ξ is viscosity coefficient of reinforced concrete are assumed to from 2×10^<-8> to 4×10^<-8> by the measurements in the author's expriments of the reinforced concrete frames builded in the ground. The Fig. 1 shows the relation of C_N, θ and T_1 in the formula (6). The point A in the Fig. 1 (3) shows the [relation θ=2×10^<-4>, T=0.12 and C_N=0.3 and the author had recognized in the several experiments of reinforced concrete wall that the first crack will occur when the deflection angle is equal to 2×10^<-4> and also had proved in the author's paper at the 2nd WCEE that the period of reinforced concrete frames with wall that openning 75% is about 0.12sec. C_N is equal to 0.3 that is nearly equal to the maximun acceration of EL Centre earthquake. The point c in the Fig. 1 (4) shows the relation of θ=2×10^<-8>, T_1=0.4sec and C_N=0.2. The author had recognized that the yielding of reinforced concrete beam and column will begin when deflection angle θ is equal to 2×10^<-8>. By the two limit cases above descrived we can say that [numerical formula] is the upper limit and [numerical formula] is lower limit of period of the N storied buildings. Fig. 2 shows the relation of distributions of observed period of the actual builings in Japan and USA and line a is the lower limit of period and C_N is 0.3, and the line c is the upper limit of period and in the case C_N=0.2. The line b is the average period of N storied building and in the case C_N=0.25. The differences of author's formula in the code in USA are only the determination of value of m in the author's general formula (7) and (8)[numerical formula]・・・・・・(7) [numerical formula]・・・・・・(8) If we take the value of m is equal to 1, [numerical formula]. This formula is inversly proportional to T_N as like as the formula C=0.02/T_N that is San Francisco City Code and if we take the value of m is equal to 0.6 [numerical formula] that is inversly proportional to T_N^<1/3> as like as [numerical formula] that is the Code of Structural Engineers Association of California.
- 社団法人日本建築学会の論文
- 1962-11-30
著者
関連論文
- 昭和15年1月15日・靜岡市大火調査報告 : 第2編 各種建築物に關する被害調査
- 2010 不規則な地震動を受ける建築物の剛重比が振巾に及ぼす効果 : その3. レスポンススペクトラムと重層構造物の変形(構造)
- 223 不規則な地震動を受ける建築物の剛重比が振巾に及ぼす効果 : その2・柱脚完全固定の場合との比較(構造)
- 260 不規則な地震動を受ける建築物の剛重比が振巾に及ぼす効果 : 建築物の基礎条件が振巾に及ぼす効果(構造)
- 258 不規則なる地震動を受ける建築物の変形と静力震度
- 257 不規則な地震動を受ける建築物の感応性
- 222 高層建築の震力分布に関する研究 (其の4) : 地震時に於ける建築物の最悪変形状態
- 221 高層建築の震力分布に関する研究 (其の3) : 地震時に於ける実際建築物の変形
- 220 有壁高層ラーメンの実験的研究 (其の2) : 破壊過程に於ける撓み性状の変化と横力分布係数の低減
- 246. 有壁高層ラーメンの実験的研究
- 35. 高層建築物の耐震性 (其の1) : 有壁高層ラーメンの性質
- 39 ブロック壁の耐震性
- 富士宮市立第2中学校々舎の水平加力並に振動測定結果 (学校建築特集)
- 104 ディーゼルエンヂンによる地盤の振動測定報告
- 2112 杭支持力公式の研究 : 静力学的杭公式の適用性に関する検討(構造)
- 214 摩擦杭群の耐力低減に関する研究(其の4)(構造)
- 213 杭耐力算定法に関する研究(構造)
- 257 摩擦杭群の耐力低減に関する研究(其の3)(構造)
- 256 摩擦杭群の耐力低減に関する研究(其の2)(構造)
- 262 摩擦杭郡の耐力低減に関する研究 (其の1)
- "高層建築設計震度式"に対する討議の反論
- 高層建築設計震度式と週期式
- 建築教育について
- 建築物の耐震安全度の問題 ("耐震計算の規定はこのままでよいか"に対する意見) (構造特集)
- 恩師佐野先生を偲ぶ
- 耐震構造学に関する研究
- 39) 〓状體の砂層に於ける地下部深さと地上部高さとの比がその振動減衰性に及ぼす影響
- 38) 衝撃力に對する鐵骨接合部の強さに關する研究 (第1報)
- 7) 木造建物外周壁の防火度に關する基本的研究
- 22) 火熱せらるる鐵筋コンクリート版及〓體の表面温度並びにその温度傳導に關する研究 (防火壁並に被覆の研究)
- 溶接部の振動強度に關する研究
- 熔接部の振動強度に關する研究
- 耐火處理せる家屋の耐火實驗
- 25) 高熱を受けたるモルタル、コンクリート及び鐵筋コンクリートの強度に關する研究
- 建造物の振動減衰性に關する研究 : 鐵筋コンクリート造の基礎状態に因る減衰係數と週期の變化
- 4) 繰返正負剪斷又は厭縮を受くるコンクリートのエネルギー消粍量