Proper Lusternik-Schnirelmann $\pi_1$-categories\\
スポンサーリンク
概要
- 論文の詳細を見る
{We define new proper homotopy invariants, the proper Lus\-ter\-nik-Schni\-rel\-mann $\pi_1$-categories $\ppicat $ and $\pinfcat$. Then, we prove that, if $\ppicat$ (resp. $\pinfcat$) of a locally path-connected, Hausdorff, locally compact, and paracompact space is equal to or less than $n$, then there is a proper map to a locally finite polyhedron of dimension $n+1$ that induces an isomorphism of fundamental pro-groups $\ppitilde$ (resp. $\pitildeinf$).}
- 広島大学の論文