卵のかたちの認識1 : トーラス(円環面)の断面に関する研究(2部 生体の特性)
スポンサーリンク
概要
- 論文の詳細を見る
I regarded an oval as a cross section of a torus (defined as closed curve E) cut by a plane II, parallel to the axis of rotation. Closed curve E is expressed as follows: [numerical formula] where a is the distance from the axis of rotation to plane II, and r is the distance from the axis of rotation to the center of the generating circle. I showed four shapes for closed curve E, which are similar to those of "real" eggs, by varying a values under constant r values. Then I demonstrated that shapes constructed by a computer are fairly similar to the "real" egg's shapes. I assumed that the most important function performed by the oval shapes of eggs is that eggs can stay near the original place when they are forced to roll. I showed that the greater the a value is, the shorter the radius of rotation of rolling eggs is.
- バイオメカニズム学会の論文
- 1998-11-25
著者
関連論文
- 人工股関節スパイラルステムのデザイン(4部 生体への負荷と代替)
- ヒト前腕骨の形態と機能 : 単一の幾何学的概念(円錐面上の測地線)を用いて行った,生物の形態および機能設計(3部 適応)
- 特集に寄せて(生物の形をどう捉えるか)
- 円錐面の測地線を利用したヒト肘 : 前腕骨構造の設計
- 2本の円錐面の測地線の転がり運動について : ヒト前腕骨の形態と機能2(3部 モデル解析)
- 卵のかたちの認識1 : トーラス(円環面)の断面に関する研究(2部 生体の特性)