Deformation and applicability of surfaces in Lie sphere geometry
スポンサーリンク
概要
- 論文の詳細を見る
The theory of surfaces in Euclidean space can be naturally formulated in the more general context of Legendre surfaces into the space of contact elements. We address the question of deformability of Legendre surfaces with respect to the symmetry group of Lie sphere contact transformations from the point of view of the deformation theory of submanifolds in homogeneous spaces. Necessary and sufficient conditions are provided for a Legendre surface to admit non-trivial deformations, and the corresponding existence problem is discussed.
- 東北大学の論文
著者
-
Nicolodi Lorenzo
Dipartimento Di Matematica Universita Degli Studi Di Parma
-
Musso Emilio
Departimento di Matematica Pura ed Applicata, Universita degli Studi di L'Aquila
-
Nicolodi Lorenzo
Dipartimento Di Matematica G. Castelnuovo' Universita Di Roma La Sapienza'
-
Musso Emilio
Departimento Di Matematica Pura Ed Applicata Universita Degli Studi Di L'aquila
関連論文
- Deformation and applicability of surfaces in Lie sphere geometry
- Harmonic and Isometric Rotations Around a Submanifold