Haar測度と平均値について
スポンサーリンク
概要
- 論文の詳細を見る
The object of this paper is to make use of the mean of the continuos function in the construction of the Haar's measure for a compact topological group. Let G be a compact topological group and C_A the indicator of a subset A of G. Let T denote the Baire function class and B the Borel family of the sets. Now, let M(f) denote the mean of f for any function f∈T, where the "mean" of f is the limit of the sequence {M(f_n)}, as f_n→f (n→∝, f_n belong the preceding class of f). Then we define the Haar's measure μ* as the following formula; μ*(A)=inf M(f){C_A≦f, f∈T_1} for any A⊂G, where T_1 is the Baire function family of the first class. Hence ∫f(x)dμ(x)=M(f), for any f∈T specially ∫1dμ(x)=M(1)=1 From the uniqueness of the Haar's measure, the Haar's measure on G be constructed by the method as described above.
- 岐阜工業高等専門学校の論文
- 1970-03-25
著者
関連論文
- 高専理数科目の教育課程についての新しい試み(第1学年・第2学年)
- 高専理数科目の教育課程についての考察
- 高専理数科目の教育課程についての新しい試み : 第3学年(応数・応物を含まず)
- 数値微分積分について
- On a Certain Mean Value of Definite Integral on a Regular Polygon
- Haar測度と平均値について
- 定数係数線形偏微分方程式の弱い解について
- On the integration of the class function on the compact semi-simple Lie group〔英文〕
- Some Applications of the Factorization Method
- On the Representation Theory of Lie Algebras and Some Special Functions
- Riemann Surface for the Function √(I)
- On the Theorem of Apery
- On the Extention of Tauber's Theorem and Fejer's Teorem