流体運動における応力と変位との関係
スポンサーリンク
概要
- 論文の詳細を見る
Conclusions obtained from solutions of Navier-Stokes' equations which are accepted generally to hold in fluid motion lead to various hydrodynamical paradoces. In order to avoid the defects the author proposes a generalized relation between stress and displacement, introducing new functions of space coordinates and time μ_1 (x, y, t) and μ_2 (x, y, t). The equations derived from the new relation are solved for the case of a plate placed parallel to the flow. Examining numerical results obtained from these solutions, the author get the following conclusions. 1) The relation which is adopted in the derivation of Navier-Stokes' equations is true only in a limited part of boundary layer and at very low velocity. μ_1 differs from unity and varies widely as velocity increases. 2) Laminar and turbulent flow are distinguished by behevier of μ_1 (x, y, t) along the direction of flow. In laminar flow μ_1 (x, y, t) decrease, and in turbulent flow increases as x increases. In a transient flow μ_1 (x, y, t) becomes constant for all x. 3) The law of similarity is effected by a characteristic number K. The curve which is considered as typical one for frictional resistane of a plate must be observed from the author's point of view. Points obtained by Blasius' experiment correspond to the author's results for L = 0.5 and show a good agreement. At all the author's solutions give a good agreement with experiments, can explain detailed mechanism of the flow in boundary layer and remove hydrodynamical paradoces previously encountered in the solutions of Navier-Stokes' equations.
- 明治大学の論文
著者
関連論文
- 乱流格子による乱流境界層と普通の流れに於ける乱流境界層との差異について
- 全国大学機械工学科授業時間調査報告
- 工業教育のあり方
- 伴流を伴う円周りの流れ
- 流体運動方程式および相似律に対する問題
- 流体運動の基本方程式
- 円から翼型への等角写像
- 数理物理微分方程式の一般化とその解法(科学技術研究所年報第8号)
- 一般化された流体運動の基本方程式を使用して流れに平行に置かれた矩形板周りの運動とその摩擦抵抗係数の研究(第2報)
- 数理物理微分方程式の一般化とその解法(科学技術研究所年報第7号)
- 一般化された流体運動の基本方程式を使用して流れに平行に置かれた矩形板周りの運動とその摩擦抵抗係数の研究
- 流体運動における応力と変位との関係
- 平板の摩擦抵抗に就いて