Stable extendibility of $m \tau _n$ over real projective spaces
スポンサーリンク
概要
- 論文の詳細を見る
The purpose of this paper is to study the stable extendibility of the $m$-\hspace*{0pt}times Whitney sum $m\tau_n$ of the tangent bundle $\tau_n=\tau(\mP^n)$ of the $n$-\hspace*{0pt}dimensional real projective space $\mP^n$. We determine the dimension $N$ for which $m\tau_n$ is stably extendible to $\mP^N$ but is not stably extendible to $\mP^{N+1}$ for $m\le10$.
- 広島大学の論文
著者
関連論文
- Stable extendibility of $m \tau _n$ over real projective spaces
- Stable extendibility of the tangent bundles over the lens spaces