Carbon Nanotubes : Optical Absorption in Aharonov-Bohm Flux
スポンサーリンク
概要
- 論文の詳細を見る
- 社団法人応用物理学会の論文
- 1995-02-15
著者
-
ANDO Tsuneya
Institute for Solid State Physics, University of Tokyo
-
AJIKI Hiroshi
Institute for Solid State Physics, University of Tokyo
関連論文
- Electronic States of BCN Alloy Nanotubes in a Simple Tight-Binding Model (Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties)
- Electronic States of BCN Alloy Nanotubes in a Simple Tight-Binding Model
- Conductance of Crossed Carbon Nanotubes : Condensed Matter: Electronic Properties, etc.
- Electronic States in Capped Carbon Nanotubes : Condensed Matter: Electronic Properties, etc.
- Conductance of Carbon Nanotube Junctions in Magnetic Fields
- Scattering-Matric Formalism for Antidot Lattices
- Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices(Condensed Matter : Electronic Structure, Electrical, Magnetic and Optical Properties)
- Carbon Nanotubes : Optical Absorption in Aharonov-Bohm Flux
- Finite-Size Scaling Study of Localization in Landau Levels
- Contact between Carbon Nanotube and Metallic Electrode : Condensed Matter: Electronic Properties, etc.
- Landau-Level Broadening in GaAs/AlGaAs Heterojunctions
- Conductance of Carbon Nanotubes with a Stone-Wales Defect
- Topological Effects in Capped Carbon Nanotubes
- Interband Magneto-Optics of n-Type Modulation-Doped GaAs-AlGaAs Multi-Quantum Wells in High Magnetic Fields up to 40 T
- Numerical Studies on Quantum Transport in Antidot Arrays in Magnetic Fields
- Quantum Transport in Two-Dimensional Graphite System
- Conductance of Carbon Nanotubes with a Vacancy
- Effective-Mass Theory of Carbon Nanotubes with Vacancy
- Numerical Study of Transport in Carbon Nanotubes with Lattice Vacancy
- Effective-Mass Theory of Carbon Nanotube Junctions
- Magnetic-Field Dependence of Localization in Antidot Lattices
- Localization in Strong Magnetic Fields and Quantum Hall Effect
- Conductance of Carbon Nanotube Junctions in Magnetic Fields