B235 一様等方性乱流における 1 点・ 2 点速度分布
スポンサーリンク
概要
- 論文の詳細を見る
This is the third report of my works on the derivation of the velocity distributions of homogeneous turbulence, using the cross-independence closure hypothesis and the equations of one and two-point velocitiy distributions. In the first report, the hypothesis was applied to the equation of 1-point velocity distribution and it was shown that there exists a self-similar solution representing a normal velocity distribution of decaying turbulence. In the second report, the physical basis of the hypothesis was disussed and it was shown that the notion of cross-independence is basically equivalent to that of Kolmogorov's local equilibrium hypothesis. Then, the hypothesis was applied to the equation of 2-point velocity distribution, but owing to the mathematical complexity of the resulting equation, no concrete solution has been derived. In this report, the equation of 2-point velocity distribution is transformed into those of the velocity-sum and velocity-difference distributions. It is shown that there exist the same type of self-similar solutions for them, each representing normal velocity distributions as that for the one-point velocity distribution. The physical significance of such abundance of normality of the distributions is discussed.
- 日本流体力学会の論文
- 2001-07-31
著者
関連論文
- 意識の問題 : ゼノンの運動否定の論理
- AM05-12-004 一様等方性乱流における速度分布の局所平衡相似性(乱流渦構造1,一般講演)
- B-235 Burgers 乱流における速度分布の慣性相似性
- 一様乱流の速度分布の慣性正規性 (乱れの発生,維持機構および統計法則の数理)
- 交差独立完結仮説による非一様乱流の統計理論(乱流基礎(1),一般講演)
- 非一様乱流の交差独立完結仮説による統計理論(乱流の予測とモデリング(4),一般講演)
- AM06-22-011 非一様乱流の交差独立完結仮説による統計理論(乱流の予測とモデリング(3),一般講演)
- B235 一様等方性乱流における 1 点・ 2 点速度分布
- C131 交差独立性仮説による一様乱流の速度分布
- 一様乱流における速度の交差独立性と速度分布 (渦度場のダイナミックスと乱流の数理)
- 一様乱流における速度分布の交差独立性
- 第19回国際理論・応用力学会議1996京都開催報告(学術会合報告)