B-235 Burgers 乱流における速度分布の慣性相似性
スポンサーリンク
概要
- 論文の詳細を見る
One and two-point velocity distributions of the Burgers turbulence are worked out using the cross-independence hypothesis of two-point velocities, which was employed by the authors for dealing with homogeneous isotropic turbulence. One-point velocity distribution is found to be an inertial normal distribution including only the energy dissipation rate ε. Initially it starts from an uniform distribution with infinitesimal probability density, grows up as a normal distribution with decreasing variance, and eventually tends to a delta distribution corresponding to the dead still state. The kinetic energy E changes in time t as t^<-1> and the energy dissipation rate ε as t^<-2>. The velocity-sum and velocity-difference distributions are obtained as another mertial normal distribution for all finite distanceγ>0. associated with the constant ε/2 in place of ε of the one-point velocity distribution. The inertial normality makes all viscous lengths zero and causes discontinuous change of the distributions at γ=0. The inertial normality is broken for the velocity-difference distribution at the inertial range, which is obtained numerically as an asymmetric non-normal distribution.
- 日本流体力学会の論文
- 2003-07-28
著者
関連論文
- 意識の問題 : ゼノンの運動否定の論理
- AM05-12-004 一様等方性乱流における速度分布の局所平衡相似性(乱流渦構造1,一般講演)
- B-235 Burgers 乱流における速度分布の慣性相似性
- 一様乱流の速度分布の慣性正規性 (乱れの発生,維持機構および統計法則の数理)
- 交差独立完結仮説による非一様乱流の統計理論(乱流基礎(1),一般講演)
- 非一様乱流の交差独立完結仮説による統計理論(乱流の予測とモデリング(4),一般講演)
- AM06-22-011 非一様乱流の交差独立完結仮説による統計理論(乱流の予測とモデリング(3),一般講演)
- B235 一様等方性乱流における 1 点・ 2 点速度分布
- C131 交差独立性仮説による一様乱流の速度分布
- 一様乱流における速度の交差独立性と速度分布 (渦度場のダイナミックスと乱流の数理)
- 一様乱流における速度分布の交差独立性
- 第19回国際理論・応用力学会議1996京都開催報告(学術会合報告)