光を放つ宝石-2-
スポンサーリンク
概要
- 論文の詳細を見る
Since 1862, Schillarization of moonstone has been studied extensively using various methods, such as optical and electron microscopes. The theories on the origin of Schillarization may be classified into two; diffraction and dispersion theories. The diffraction theory was first put forward in 1921 by the late Prof. S. Kozu of Tohoku Imperial University, who studied both adularia and moonstone by X-ray and found that moonstone was crypto-perthite and adularia potash feldspar, denying the long-holding misunderstandings that moonstone was a variety of adularia, showing Schillar. Therefore, it is suggested that the term adularescence which has been carelessly used among gemmologists should be abandoned. Fig.10 A shows the Laue pattern of moonstone from Shrilanka which consists of double spots due to albite and orthoclase, definitely showing that moonstone is crypto-perthite. When this sample is heated up to 1088℃, the Laue pattern changes to a single crystal pattern as shown in Fig.10 B, exsolution pattern and Schillar effect disappear simultaneously. Kozu therefore believed that Schillarization of. moonstone is due to the optical diffraction from crypto-perthite lamellae. The lamellae have been also observed under the electron microscope. The dispersion theory was put forward by Spencer (1930) and Raman (1950), though the latter used a term "diffusion", instead of dispersion. Both did not present enough evidence to support their theory. Now, let's compare the Schillar and texture of moonstone with those of labradorite. Labradorite consists of regular lamellae whose thickness changes with the composition, and color, irridescence, changes with the thickness. On the contrary, moonstone consists of fine alternating lamellae of albite and orthoclase whose thickness varies from lamellae to lamellae, depending not on the compositions. Albite lamellae show fine albite twinning. The colour of moonstone from most localities is blue or silky white. It is clear that the optics should be different between moonstone and labradorite.Fig.15 shows a sketch of a simple experiment applied to moonstone from Shrilanka. A narrow light beam transmitting through the crystal normal to the (001)(arrow) is reflected by the perthite lamellae parallel to the (8^^-01), resulting in an elongated band of light in one direction. When viewed from the upper side, blue(青), white(白) and red(赤) colours is seen on the cleavage surface as apart from the point of emergence of the light beam. Similar experiment was carried out using a cylindrical screen, a specimen being positioned at the centre of the cylinder. Fig.16 shows intensity distribution of light on the screen. A peak is observed at 60°,which correaponds to the odd times reflection from (8^^-01) perthite lamellae, whereas a broad peak appearing near 0°is due to the even times reflection from the lamellae. The colour on the screen changes with the thickness of specimens. It is bluish when the apecimen is thinner than about 1mm, and is silky white for the crystal of 1 to 5mm thick, and reddish for thicker specimen than about 5mm. Since the phenomenon is very similar to the scattering of sunlight in the sky, it is conjectured that the origin of Schillarization of moonstone is dispersion of light due to the lamellar texture. When dispersion is weak, the colour is blue, and when it is strong, it is reddish. If dispersion is medium, the colour is silky white. Figure 17 shows an electron micrograph of a thin foil parallel to the (001) of moonstone from Shrilanka. Albite lamellae with fine polysynthetic twinning and orthoclase lamellae have very wavy and irregular interfaces and varying thickness. The orientation of reflection and refraction will slightly deviates from those expected for the reflection of real (8^^-01) lamellae. Since the reflection and refraction are repeated many times in the moonstone, the light will become to show the nature of dispersion. The moonstone from Shrilanka is transparent in the di
- 1976-03-15
著者
関連論文
- 光を放つ宝石-2-
- トパ-ズおよび電気石中のフッ素の定量
- 宮城県仙台市三滝安山岩質玄武岩ジオ-ド中の鉄サポナイト
- 天然Amethyst中のBrazil twinning組織について
- 仙台市太白山産クリストバライト
- 宮城県白石産球状岩
- 偏光顕微鏡を使ってみませんか
- B22 マグマに対する硫黄溶解度の実験的研究;とくに珪酸塩ガラス組成との関係について
- マントル鉱物中の水素の存在状態 : 分子動力学法からのアプローチ
- B25 キラウエア火山マグマ溜まりにおける珪酸塩メルト・硫化物メルト量比の見積もり計算
- 大森啓一先生に捧ぐ
- ゼオライトの分域構造と対称性
- 鉱物の光学異常--その150年間の謎と謎解き
- ガーネットのイリデッセンス
- 天然ゼオライトの結晶構造 : 結晶構造と光学特性
- S1-4 天然ゼオライトの結晶構造 : 結晶構造と光学特性
- 不純物吸着によるうず巻成長ステップのあれ : 笹沢産赤鉄鉱での実証 : ステップ運動
- ゼオライトの組織と構造 (ゼオライト--構造と性質)
- Growth SectoとOrderingのOptics (高温,高圧下の鉱物結晶学) -- (その場観察と鉱物の高次構造)
- はじめに (宝石鉱物と宝石学)
- 鉱物における秩序-無秩序分域組織と結晶成長 : 水熱法
- 仙台市近郊,棒目木産スチルバイトの組織
- マントル鉱物中の水素の存在状態 : 分子動力学法からのアプローチ
- 福島県宝坂産オパ-ルの組織とその構成鉱物について
- 光を放つ宝石 -3-
- 光を放つ宝石-1-
- オパール : その歴史と科学-2-
- イオンスパッタリングを利用した鉱物電顕用試料の作製法
- オパール:その歴史と科学-1-
- コオリ長石の成長と構造 : 鉱物
- 鉱物の成長史
- カリ長石の組織と結晶成長
- 微斜長石-正長石パーサイトの電子顕微鏡による研究
- パーサイトの電子顕微鏡による研究 : 鉱物
- 微斜長石の電子顕微鏡による研究 (鉱物の結晶組織・結晶構造および物性と生成条件の研究(第3回シンポジウム記録)) -- (第1セッション:鉱物の微細構造・組織と生成条件-1-)
- KClフラックス法で合成したZnS結晶
- 電子顕微鏡による黒雲母片岩の観察
- 細倉鉱山産閃亜鉛鉱の電子顕微鏡による研究
- 電子線照射による滑石,緑泥石及び白雲母の構造変化
- 緑柱石及び水晶の破面の電子顕微鏡観察
- 水晶の錐面に見られる成長丘