バフルの音場効果計算への Kirchhoff-Huygens 積分式の適用における誤差とその補正
スポンサーリンク
概要
- 論文の詳細を見る
So called "Kirchhoff-Huygens Fomula" Φ≡φ/[(2<Q>^^^. exp[-irk])/r]=1+Φ_a (a) Φ=1-1/(2π)lmoust^^<2π>__0exp[ikr(φ)]dφ (b) (where φ: velocity potential, k: wave number, and other notations are shown in Fig. 1) is useful for the calculation of the sound field produced by a baffle having a point source, because it is applicable to the baffles of various shapes, moreover, numerical calculation is simple. However, this Fomula is derived under some assumptions which are satisfied only at high signal frequency. It is known that the error due to these assumptions cannot be ignored in practical use. In this paper the correction of the error is discussed. The assumptions concern the sound pressure on the plane containing the front of a baffle. The normalized sound pressure distribution on a circular plate baffle is shown in Fig. 4. As suggested in this example, improved approximation is given by using the mean value of the normalized pressure instead of the conventional assumption "6 dB". As the result of examination on the correction of error, following conclusions were obtained. 1) For the circular plate baffle (radius a) Φ=1+f_aΦ_a (c) is useful, where f_a is shown in Fig. 6. The error of this corrected formula is less than ±1 dB. 2) For a plate baffle of arbitrary shape, the mean radius a^^^-=1/(2π)⎰^^<2π>__0a(φ)dφ (d) should be used for the abscissa of Fig. 6 to obtain f_a. 3) For cylindrical and box baffles, it seems that uncorrected Kirchhoff-Huygens Formula is practically useful in present state.
- 社団法人日本音響学会の論文
- 1974-07-01
著者
関連論文
- 小型スピーカにおける動的歪と高調波歪の関係とその解析
- マイクロホン小史 : 民生用途のマイクロホンを中心に(マイクロホン開発における各種技術分野の動向)
- ディジタルオーディオにおける時間ゆらぎ検知閾
- 第1部-分野別の流れ- 電気音響分野
- 筐体を振動体として用いる圧電形受話器
- 長岡技術科学大学の音響実験施設 (<特集>最近の各方面の音響設備)
- 動作減衰量に着目した各種電気音響変換器の比較
- 流体スチフネスによる共振形圧力電気変換器
- Kirchhoff-Huygens積分式による音場効果計算の誤差とその補正
- バフルの音場効果計算への Kirchhoff-Huygens 積分式の適用における誤差とその補正
- 不等間隔配列形指向性音源の一設計法
- 多重共振系の周波数特性の制御に関するモデル的考察
- 周波数変調方式を用いた微少変位測定法の検討