不規則騒音のレベル変動に関する統計的研究(II) : 騒音結合分布に及ぼす一般相関効果とある種の一次相関を用いた騒音中の弱信号検出
スポンサーリンク
概要
- 論文の詳細を見る
In the present paper, our attention is focused on the actual random variation itself in time of the noise level, such as the street noise, and the statistical treatment from such a dynamic viewpoint is in striking contrast to the statistical method of treating treating the noise fluctuation in the form of one-variate level distribution as given in the previous paper. When we observe simultaneously one or more noise fluctuations having rondom phases at two or more different observation points with differences in time, position and frequency, we need to consider the joint probability distribution of the multiple correlative random noise variates. For instance, it corresponds to the case where we consider the general correlation among many instantaneous of noise level (phon) fluctuating only in positive region and their variations (speed or gradients of degrees 2, 3, 4, ・・・・) for the purpose of analysing quantitatively the variety of random noise fluctuation. First, we define the range of the fluctuation of the multiple correlative random noise variates (e. g. , the noise level is defined in 「(0,∞) and its gradient is defined in (-∞, ∞)」 and then express the joint probability density distribution which governs the noise variates in the form of orthonormal series within the range of its definition - a mixed expansion in statistical Laguerre series and statistical Hermite series. In practical application it is necessary to truncate the above statistical series expansion to an appropriate number of terms according to the stability of the distribution. We must call our attention to the fact that the statistical meaning (i. e. , the randomness property) is reflected in each expansion coefficient. More explicitly, each coefficient gives the general correlation of high degree among the multiple random noise variates, of which the usual linear correlation is a first-order approximation. Finally, the detailed experimental considerations of the detection of weak signal buried in the random noise by means of a certain linear cross-correlation are given in the following five cases: (a) the periodicity of a crossing signal buried in the traffic noise, (b) the period of a sinusoidal or a square wave buried in the white noise, (c) the velocity of motor rotation buried in the factory noise, (d) the commercial frequency buried in the noise of transformer room, (e) the klirrfactor of a distorted wave buried in the white noise. The statistical method described in this paper seems to be applicable also to other wide fields of measurement on random phenomena because of its generality.
- 社団法人日本音響学会の論文
- 1965-11-30
著者
関連論文
- 騒音予測における評価量L_α(α:%)とL_<eq>の対比について : 物理的意味からみた一見解
- 任意UAP関数群による雑音model形成の新たな一試み : II.実験的考察(Digital Simulation)
- 任意UAP関数群による雑音model形成の新たな一試み : I.理論的考察
- 騒音変動波形の激しさに対する統計的評価の実験的一考察
- 不規則騒音のレベル変動に関する統計的研究(VII) : 有限メモリ整流形非線形変換器を通った任意不規則騒音波の統一理論
- 標本化不規則信号の強度変動確率密度関数に及ぼす高次相関効果
- 不規則騒音のレベル変動に関する統計的研究(VI) : 白色騒音モデルの新たな形成とそのディジタル・シミュレーションによる実験的確認
- 不規則騒音のレベル変動に関する統計的研究(V) : 条件付確率分布の簡便な図式評価法
- 不規則騒音のレベル変動に関する統計的研究(IV) : 一次相関情報のある実用的検出方法
- 不規則騒音のレベル変動に関する統計的研究(III) : 不規則騒音の条件付確率密度分布陽表現
- 不規則騒音のレベル変動に関する統計的研究(II) : 騒音結合分布に及ぼす一般相関効果とある種の一次相関を用いた騒音中の弱信号検出
- 不規則騒音のレベル変動に関する統計的研究(I) : 不規則騒音確率密度分布の陽表現
- 統計的非線形制御における高次等価表現の一般的考察(II) : 自動制御